-
公开(公告)号:CN113362619A
公开(公告)日:2021-09-07
申请号:CN202110623230.3
申请日:2021-06-04
Applicant: 东南大学
Abstract: 本发明公开了一种混合交通环境下智能网联车辆匝道协同合流优化控制方法及装置,控制方法包括:构建车辆状态方程;设定车辆控制目标和控制约束;其中,车辆控制目标包括最小行驶时间和最低能耗;控制约束包括车辆动力约束、安全跟车约束和安全合流约束;构建递归最优控制框架对车辆进行控制;其中,递归最优控制框架采用递归最优控制,方法为:通过智能网联车辆实时收集人为驾驶车辆的信息并重新规划智能网联车的轨迹,以始终满足上述控制约束。本发明提出的入口匝道合流控制方法可增强智能网联车辆在混合交通环境下的通行效率、节能效率、控制稳定性和鲁棒性。
-
公开(公告)号:CN112613253A
公开(公告)日:2021-04-06
申请号:CN202110013794.5
申请日:2021-01-06
Applicant: 东南大学
IPC: G06F30/28 , G06F17/16 , G06F17/13 , G06F113/08 , G06F119/10 , G06F119/14
Abstract: 本发明通过构建车辆运动学和纵向动力学模型,将连续系统离散化后,基于递推卡尔曼滤波实时估计道路坡度,并基于扩展卡尔曼滤波实时估计轮胎滚动阻力系数和空气阻力系数。利用上述参数估计值实时修正车辆纵向动力学模型,进而基于带遗忘因子的递推最小二乘法对车辆质量进行实时估计。相比于直接采用上述参数的标定值来估计车辆质量,该方法中构建的车辆动力学模型中的敏感参数能根据道路环境的变化做出自适应修正,降低模型中敏感参数设定值与实际值的误差,有效提高坡度和车辆质量估计算法的准确性和稳定性,适用条件较广,为车辆控制系统提供了较为可靠的道路坡度和车辆质量估计结果。
-
公开(公告)号:CN110539647A
公开(公告)日:2019-12-06
申请号:CN201910734328.9
申请日:2019-08-09
Applicant: 东南大学
Abstract: 本发明涉及一种面向直线行驶工况的四轮独立驱动电动汽车转矩实时优化分配控制方法,针对以轮毂电机为动力单元的四轮独立驱动电动汽车在直线行驶工况下的转矩分配问题,制订了对应的在线优化分配控制算法,进一步利用离线获取的优化分配系数表对在线优化结果进行补偿修正,分离了转矩分配功能与整车控制器的设计耦合,有利于控制软件模块化设计的实施;本发明实现了四轮独立驱动电动汽车在直线行驶工况下的转矩优化分配,在满足驾驶意图的前提下,能够有效提高动力总成的能量效率,同时保证汽车的动力性和制动稳定性满足设计指标。
-
公开(公告)号:CN112613253B
公开(公告)日:2022-06-03
申请号:CN202110013794.5
申请日:2021-01-06
Applicant: 东南大学
IPC: G06F30/28 , G06F17/16 , G06F17/13 , G06F113/08 , G06F119/10 , G06F119/14
Abstract: 本发明通过构建车辆运动学和纵向动力学模型,将连续系统离散化后,基于递推卡尔曼滤波实时估计道路坡度,并基于扩展卡尔曼滤波实时估计轮胎滚动阻力系数和空气阻力系数。利用上述参数估计值实时修正车辆纵向动力学模型,进而基于带遗忘因子的递推最小二乘法对车辆质量进行实时估计。相比于直接采用上述参数的标定值来估计车辆质量,该方法中构建的车辆动力学模型中的敏感参数能根据道路环境的变化做出自适应修正,降低模型中敏感参数设定值与实际值的误差,有效提高坡度和车辆质量估计算法的准确性和稳定性,适用条件较广,为车辆控制系统提供了较为可靠的道路坡度和车辆质量估计结果。
-
公开(公告)号:CN114103967A
公开(公告)日:2022-03-01
申请号:CN202110436285.3
申请日:2021-04-22
Applicant: 东南大学
Abstract: 本发明公开了一种四轮独立驱动电动汽车质心侧偏角与轮胎侧向力估计方法,包含以下步骤:根据车轮动力学方程,计算轮胎纵向力;根据车辆的纵向动力学平衡方程,基于带有遗忘因子的最小二乘法估计整车质量;建立包括车辆纵向、侧向和横摆三个自由度的四轮驱动电动汽车动力学模型和反映轮胎瞬时力学特性的半经验魔术轮胎模型的鲁棒容积卡尔曼估计模块;基于所建立的鲁棒容积卡尔曼滤波模块,估计质心侧偏角与轮胎侧向力。本发明有效提高了复杂工况下滤波对模型参数摄动以及未建模噪声的抗干扰能力,不同工况下联合估计算法的准确性、鲁棒性和抗干扰性得到提高,解决了复合工况下四驱电动汽车质心侧偏角和轮胎侧向力联合估计问题。
-
公开(公告)号:CN113008240B
公开(公告)日:2021-12-14
申请号:CN202110226179.2
申请日:2021-03-01
Applicant: 东南大学
IPC: G01C21/20
Abstract: 本发明公开了一种基于稳定域的四轮独立驱动智能电动汽车路径规划方法,包含:建立非线性七自由度非线性车辆模型,七自由度包括纵向、侧向、横摆和4个车轮;基于上述建立的非线性七自由度车辆模型,得出四轮独立驱动电动汽车的稳定域;基于上述得出的稳定域,进行路径规划。本发明提出的四轮独立驱动电动汽车路径规划方法,不仅可以满足智能电动汽车日常驾驶需求,而且在紧急避撞、高速行驶等紧急工况下,同样具有工况适应性好、路径规划准确性高、容错能力强等特点,充分发挥四轮独立驱动电动汽车相比于传统汽车或集中式电动汽车的优势,将四轮驱动电动汽车智能驾驶层和底盘控制层充分紧密的结合,提高电动汽车行驶过程中的安全性和高效性。
-
公开(公告)号:CN113705865A
公开(公告)日:2021-11-26
申请号:CN202110935648.8
申请日:2021-08-16
Applicant: 东南大学
Abstract: 本发明公开一种基于深度神经网络的汽车稳定性因数预测方法,其特征在于包含以下步骤:采集驾驶员在不同工况下驾驶时的汽车状态参数数据,针对每种工况采集多组汽车状态参数数据,对采集的数据进行预处理,建立汽车稳定性因数估计数据库;设计多层前馈神经网络,神经网络学习算法的训练;对神经网络进行测试,验证神经网络的训练效果是否满足要求。本发明方法能够保证不同工况下汽车操纵稳定性,用于汽车控制器设计,能够保证控制器在汽车处于不同工况下,均有较好的控制效果。
-
公开(公告)号:CN112026533B
公开(公告)日:2021-05-11
申请号:CN202010851778.9
申请日:2020-08-21
Applicant: 东南大学
Abstract: 本发明公开一种极限工况下的四轮独立驱动电动汽车牵引力控制方法,综合考虑了驾驶员的控制需求以及车辆的稳定性原则,采用三种不同的驱动模式取代了单一的转矩分配方式,最大程度地利用了轮胎的纵、侧向附着裕度,保证了四轮独立驱动电动汽车在低附着路面的运动跟踪精度和车身稳定要求,同时也使得上层控制目标和底层执行结果保持一致,方便了驾驶员在极限工况对车辆的操纵,提高了车辆的主动安全性。
-
公开(公告)号:CN111634195A
公开(公告)日:2020-09-08
申请号:CN202010396171.6
申请日:2020-05-12
Applicant: 东南大学
Abstract: 本发明涉及一种四轮驱动电动汽车的转矩优化分配控制方法,制订了电机在行车工况、滑行工况和起步工况下的电机效率计算模型,将汽车行驶模式分为双轴行车模式、单轴行车模式、双轴起步模式和单轴起步模式,分别确定了不同模式下的消耗功率计算方法,通过离线的全局优化算法获取以能量最优为目标的转矩分配系数。为了避免控制过程中转矩变化过大,建立面向转矩变化率的转矩优化分配模型,采用模糊控制规则确定动态权重因子,进而最终确定四轮转矩分配结果;该方法以降低能量消耗和电机内电流波动为目标,计算出面向节能和转矩变化率的转矩分配系数及其对应的全局最优效率,极大地提升电动汽车的续航里程,保证轮毂电机使用的安全性和长效性。
-
公开(公告)号:CN111452781A
公开(公告)日:2020-07-28
申请号:CN202010211770.6
申请日:2020-03-24
Applicant: 东南大学
IPC: B60W30/02 , B60W30/18 , B60W40/105 , B60W40/064 , B60W40/06 , B60W40/00 , B60L15/20
Abstract: 本发明涉及一种改善加速舒适性的轮毂电机驱动电动汽车强鲁棒自适应驱动防滑控制方法,在设计时充分考虑轮胎弛豫特性的影响,并利用区域极点配置的算法将极点配置在实轴附近,降低驱动防滑系统介入时加速度的纵向抖动;采用了分段鲁棒控制的方法确保了工况变化时控制器的鲁棒性,并且使用增益调度的算法保证了在任意车速下控制器的自适应性;本发明提出的防滑方法不仅鲁棒性强,工况适应性好,能保证路面附着变化,垂向载荷变动,任意车速行驶时防滑控制的稳定性,并且满足了驱动防滑控制介入时车辆的平顺性要求,减小了车身加速度的纵向震荡,改善了车辆加速时的乘坐舒适性。
-
-
-
-
-
-
-
-
-