四轮独立驱动电动汽车质心侧偏角与轮胎侧向力估计方法

    公开(公告)号:CN114103967B

    公开(公告)日:2024-04-26

    申请号:CN202110436285.3

    申请日:2021-04-22

    Applicant: 东南大学

    Abstract: 本发明公开了一种四轮独立驱动电动汽车质心侧偏角与轮胎侧向力估计方法,包含以下步骤:根据车轮动力学方程,计算轮胎纵向力;根据车辆的纵向动力学平衡方程,基于带有遗忘因子的最小二乘法估计整车质量;建立包括车辆纵向、侧向和横摆三个自由度的四轮驱动电动汽车动力学模型和反映轮胎瞬时力学特性的半经验魔术轮胎模型的鲁棒容积卡尔曼估计模块;基于所建立的鲁棒容积卡尔曼滤波模块,估计质心侧偏角与轮胎侧向力。本发明有效提高了复杂工况下滤波对模型参数摄动以及未建模噪声的抗干扰能力,不同工况下联合估计算法的准确性、鲁棒性和抗干扰性得到提高,解决了复合工况下四驱电动汽车质心侧偏角和轮胎侧向力联合估计问题。

    一种考虑传感器数据丢失的线控汽车轮胎侧向力估计方法

    公开(公告)号:CN113978476B

    公开(公告)日:2022-08-12

    申请号:CN202110964949.3

    申请日:2021-08-20

    Applicant: 东南大学

    Abstract: 本发明涉及一种考虑传感器数据丢失的线控汽车轮胎侧向力估计方法,首先利用电动汽车车载传感器获得带有部分测量数据丢失的前轮转角,纵向速度,质心侧偏角以及纵、横向加速度信号,利用线控系统中CAN总线获得轮胎的纵向驱动力信息,将这些信息与非线性车辆模型结合利用先验预估和后验更新的方法估计轮胎侧向力,实现轮胎侧向力的精确获取。本发明可以填补当前传感器数据丢失情况下轮胎力无法估计的技术空白,促进了汽车主动安全控制技术的发展。

    一种四轮驱动电动汽车轮胎力软测量方法

    公开(公告)号:CN113650619B

    公开(公告)日:2022-08-12

    申请号:CN202111002702.X

    申请日:2021-08-30

    Applicant: 东南大学

    Abstract: 本发明公开了一种四轮驱动电动汽车轮胎力软测量方法,包括以下步骤:第一步:获取汽车的纵向速度、质心侧偏角、纵、横向加速度、前轮转角及轮胎纵向力;第二步:将获取的汽车的纵向速度、质心侧偏角、纵、横向加速度、前轮转角及轮胎纵向力信息,输入给非线性车辆动力学模型,通过车辆动力学模型计算得到预估的纵向加速度和横向加速度;第三步:将将获取的汽车的纵向速度、质心侧偏角、纵、横向加速度、前轮转角及轮胎纵向力信息和第二步预估的纵加速度、横向加速度信息一起输入给无迹卡尔曼滤波算法,获得基于模型的汽车轮胎力估计值。本发明基于算法的持续优化,不断改善预测精度,促进了汽车主动安全控制技术的发展。

    一种四轮驱动电动汽车轮胎力软测量方法

    公开(公告)号:CN113650619A

    公开(公告)日:2021-11-16

    申请号:CN202111002702.X

    申请日:2021-08-30

    Applicant: 东南大学

    Abstract: 本发明公开了一种四轮驱动电动汽车轮胎力软测量方法,包括以下步骤:第一步:获取汽车的纵向速度、质心侧偏角、纵、横向加速度、前轮转角及轮胎纵向力;第二步:将获取的汽车的纵向速度、质心侧偏角、纵、横向加速度、前轮转角及轮胎纵向力信息,输入给非线性车辆动力学模型,通过车辆动力学模型计算得到预估的纵向加速度和横向加速度;第三步:将将获取的汽车的纵向速度、质心侧偏角、纵、横向加速度、前轮转角及轮胎纵向力信息和第二步预估的纵加速度、横向加速度信息一起输入给无迹卡尔曼滤波算法,获得基于模型的汽车轮胎力估计值。本发明基于算法的持续优化,不断改善预测精度,促进了汽车主动安全控制技术的发展。

    一种多障碍物环境下的目标轨迹规划和跟踪方法

    公开(公告)号:CN115158355B

    公开(公告)日:2024-10-22

    申请号:CN202210841656.0

    申请日:2022-07-18

    Applicant: 东南大学

    Abstract: 本发明公开了一种多障碍物环境下的目标轨迹规划和跟踪方法,涉及智能交通技术领域,解决了现有技术下多障碍物环境轨迹规划难的技术问题,其技术方案要点是将初始目标轨迹进行平移,生成一簇候补轨迹集;然后根据所有障碍物的势场和交通标志线势场,选取出最优的目标轨迹;再通过样条曲线方法规划出安全平顺的轨迹,实现初始目标轨迹到决策最优轨迹的平稳切换;最后,采用模型预测控制方法设计路径跟踪控制器,实现对所规划轨迹的精准跟踪。该方法能够实现智能驾驶汽车在多障碍物环境下的安全行驶,具有很强的实用性,以及广阔的商业应用前景。

    一种多障碍物环境下的目标轨迹规划和跟踪方法

    公开(公告)号:CN115158355A

    公开(公告)日:2022-10-11

    申请号:CN202210841656.0

    申请日:2022-07-18

    Applicant: 东南大学

    Abstract: 本发明公开了一种多障碍物环境下的目标轨迹规划和跟踪方法,涉及智能交通技术领域,解决了现有技术下多障碍物环境轨迹规划难的技术问题,其技术方案要点是将初始目标轨迹进行平移,生成一簇候补轨迹集;然后根据所有障碍物的势场和交通标志线势场,选取出最优的目标轨迹;再通过样条曲线方法规划出安全平顺的轨迹,实现初始目标轨迹到决策最优轨迹的平稳切换;最后,采用模型预测控制方法设计路径跟踪控制器,实现对所规划轨迹的精准跟踪。该方法能够实现智能驾驶汽车在多障碍物环境下的安全行驶,具有很强的实用性,以及广阔的商业应用前景。

    四轮独立驱动电动汽车质心侧偏角与轮胎侧向力估计方法

    公开(公告)号:CN114103967A

    公开(公告)日:2022-03-01

    申请号:CN202110436285.3

    申请日:2021-04-22

    Applicant: 东南大学

    Abstract: 本发明公开了一种四轮独立驱动电动汽车质心侧偏角与轮胎侧向力估计方法,包含以下步骤:根据车轮动力学方程,计算轮胎纵向力;根据车辆的纵向动力学平衡方程,基于带有遗忘因子的最小二乘法估计整车质量;建立包括车辆纵向、侧向和横摆三个自由度的四轮驱动电动汽车动力学模型和反映轮胎瞬时力学特性的半经验魔术轮胎模型的鲁棒容积卡尔曼估计模块;基于所建立的鲁棒容积卡尔曼滤波模块,估计质心侧偏角与轮胎侧向力。本发明有效提高了复杂工况下滤波对模型参数摄动以及未建模噪声的抗干扰能力,不同工况下联合估计算法的准确性、鲁棒性和抗干扰性得到提高,解决了复合工况下四驱电动汽车质心侧偏角和轮胎侧向力联合估计问题。

    多车协同轨迹规划和路径跟踪方法

    公开(公告)号:CN114030469A

    公开(公告)日:2022-02-11

    申请号:CN202110675043.X

    申请日:2021-06-18

    Applicant: 东南大学

    Abstract: 本发明公开了一种多车协同轨迹规划和路径跟踪方法,涉及智能交通技术领域,解决了现有技术下单车变道效率不高的技术问题,其技术方案要点是将车‑车之间的协同变道分解为车速调整和变道汇入两个过程,在调整阶段综合考虑了车辆行驶的安全性、舒适性、交通效率等因素,获取每辆车最优的加/减速度并进行纵向车速调整。该方法能够实现智能网联汽车协同实时轨迹重规划和全局路径跟踪,具有很强的实用性,以及广阔的商业应用前景。

    一种基于模型预测控制的拟人化控制器设计方法

    公开(公告)号:CN115285136B

    公开(公告)日:2025-03-25

    申请号:CN202210842510.8

    申请日:2022-07-18

    Applicant: 东南大学

    Abstract: 本发明公开了一种基于模型预测控制的拟人化控制器设计方法,涉及智能交通技术领域,解决了现有自动驾驶技术偏向同质化、不符合驾驶员个性化操纵偏好的技术问题,其技术方案要点是设计基于模型预测控制的路径跟踪控制器,采用不同驾驶员个性化的视觉预瞄‑反馈控制‑比例增益‑神经肌肉延迟行为对路径跟踪控制器进行拟人化改进,有效提高不同驾驶员对于车辆操纵的满意程度。该方法能够实现智能汽车的拟人化驾驶,提高人类驾驶员对于智能汽车的信任感和接受度,具有很强的实用性,以及广阔的商业应用前景。

    智能汽车行车风险场大小的量化方法、装置及存储介质

    公开(公告)号:CN115271315A

    公开(公告)日:2022-11-01

    申请号:CN202210616859.X

    申请日:2022-06-01

    Applicant: 东南大学

    Abstract: 本发明公开了一种智能汽车行车风险场大小的量化方法、装置及存储介质,其中量化方法包括:获取影响智能汽车行车风险大小的各因素的尺寸信息;以智能汽车、行人、障碍物及车道线的长宽尺寸,构建矩形模型;对矩形模型进行包络优化,得到包络模型;根据包络模型所包络的区域范围,确定复杂多变的交通环境、结构化道路条件下智能汽车行车时所受风险场中各影响因素产生的风险场峰值的范围;根据所确定的风险场峰值的范围,基于社会力思想,构建场强变化的数学模型。本发明根据智能汽车受到的行车风险来源于影响行车安全的各因素之间的关系,提出了一个统一的并能准确反映复杂多变的交通环境下智能汽车行车风险大小的量化方法的数学模型。

Patent Agency Ranking