-
公开(公告)号:CN104681730A
公开(公告)日:2015-06-03
申请号:CN201510065767.7
申请日:2015-02-09
Applicant: 桂林电子科技大学
Abstract: 本发明公开了一种具有梯度结构空穴注入传输体系的紫外有机电致发光器件,包括衬底层、阳极层、发光层、电子传输层、电子注入层、反射金属阴极层,其特征是,还包括梯度结构空穴注入传输体系层,所述衬底层、阳极层、梯度结构空穴注入传输体系层、发光层、电子传输层、电子注入层、反射金属阴极层顺序叠接为一体,从阳极层由正向负连接反射金属阴极层构成外电路。这种器件梯度结构空穴注入传输体系有效地促进了空穴的注入和传输,增加了发光层中空穴的数量,促进了空穴-电子的平衡性,因而有更多的空穴与电子在发光层中复合产生近紫外光发射,提高了紫外OLED器件的辐照度和发光效率。本发明同时公开了这种器件的制备方法。
-
公开(公告)号:CN103219466A
公开(公告)日:2013-07-24
申请号:CN201310154664.9
申请日:2013-04-28
Applicant: 桂林电子科技大学
Abstract: 本发明提供了一种有机阻变存储器及其制备方法,包括由下至上叠接的衬底、下电极、阻变层、上电极,其特征是:存储结构为阵列式结构,阻变层的有机阻变转换材料为聚甲基丙烯酸甲酯(PMMA)和聚醚酰亚胺(PEI)的共混物。制备时,先在衬底上制备条状下电极,然后涂覆有机阻变层膜,低温固化后,在阻变层膜的表面制备交叉的条状电极,形成阵列存储结构。本发明的优点是,该有机阻变存储器具有高的开关比,稳定的存储性能,极小的关态电流,较低的制备温度。
-
公开(公告)号:CN103187527A
公开(公告)日:2013-07-03
申请号:CN201310067831.6
申请日:2013-03-05
Applicant: 桂林电子科技大学
IPC: H01L45/00
Abstract: 本发明公开了一种Ce掺杂Bi4-xCexTi3O12电致阻变薄膜及其阻变电容的制备方法,包括以Pt/TiO2/Si为衬底,采用溶胶-凝胶(Sol-Gel)工艺方法制备Bi4-xCexTi3O12电致阻变薄膜,采用直流磁控溅射工艺方法制备金属薄膜上电极并获得相应的阻变电容。本发明的优点是:(1)薄膜的组分控制精确,而且易于调整(掺杂)组分,能够大面积制膜,成本低;(2)采用多次匀胶,分层预热、线性升温加保温的工艺方案,可提高结晶度,减少薄膜内应力,提高薄膜的质量和性能;(3)与半导体Si集成工艺兼容;(4)通过适量的Ce掺杂,可以明显提高Bi4-xCexTi3O12薄膜的阻变性能。
-
公开(公告)号:CN102244010A
公开(公告)日:2011-11-16
申请号:CN201110150070.1
申请日:2011-06-03
Applicant: 桂林电子科技大学
Abstract: 本发明公开了一种玻璃衬底p-CuAlO2/n-ZnO:Al透明薄膜异质结的制备方法,(1)采用溶胶-凝胶(Sol-Gel)工艺制备p-CAO透明导电薄膜后,再采用超声喷雾热解(USP)工艺制备n-AZO透明导电薄膜;(2)制备p-CAO薄膜时需多次匀胶、分层预热处理;(3)p-CAO薄膜需经退火处理,且退火在氩气气氛下进行;(4)采用USP工艺,在已覆盖CAO薄膜衬底上沉积n-AZO透明导电薄膜;(5)沉积n-AZO透明导电薄膜时衬底需加热,且衬底温度不超过320℃,样品自然冷却即得p-CuAlO2/n-ZnO:Al(p-CAO/n-AZO)透明薄膜异质结。该方法新颖、简单,且能满足大面积成膜工艺要求,其制备的p-CAO/n-AZO异质结为全透明结构并能实现p-n结功能,具有良好的光电性能。
-
公开(公告)号:CN109704757B
公开(公告)日:2021-09-21
申请号:CN201910025697.0
申请日:2019-01-11
Applicant: 桂林电子科技大学
IPC: C04B35/475 , C04B35/622
Abstract: 本发明公开了一种兼具低场与高场压电性能的无铅压电陶瓷及其制备方法,所述无铅压电陶瓷是以(Bi0.5Na0.5)TiO3、BaTiO3、Bi2CoMnO6、WO3和MgO为原料,按照化学组成通式(1‑y)(Bi0.5Na0.5)0.94Ba0.06Ti1‑x(W0.5Mg0.5)xO3‑yBi2CoMnO6制备所得,其中x、y表示摩尔分数,0.01≤x≤0.05,0.01≤y≤0.05;所述制备方法则是在现有工艺上优化后的方法。本发明公开的无铅压电陶瓷能够很好的兼顾低场和高场下的压电性能,生产成本低、实用性好。
-
公开(公告)号:CN110041074B
公开(公告)日:2021-09-07
申请号:CN201910478416.7
申请日:2019-06-03
Applicant: 桂林电子科技大学
IPC: C04B35/495 , C04B35/622
Abstract: 本发明提供了一种上转换发光透明铁电陶瓷材料及其制备方法和应用,属于陶瓷材料领域。本发明提供的陶瓷材料结构式为:(1‑x)K0.5Na0.5NbO3‑xSr(Yb0.5Nb0.5)O3‑yM,M为Er或Ho,x=0.05~0.35,y=0.001~0.01。本发明提供的陶瓷材料以K0.5Na0.5NbO3(KNN)铁电陶瓷为基体,固溶第二组元Sr(Yb0.5Nb0.5)O3后,使陶瓷材料具有透明性能;在此基础上,通过掺杂稀土Er或Ho,使陶瓷材料同时具有上转换光致发光性能。本发明提供的陶瓷材料同时具备较好的上转换发光性能和铁电性能,而且透光性较好,是一种多功能陶瓷材料。
-
公开(公告)号:CN113173786A
公开(公告)日:2021-07-27
申请号:CN202110526648.2
申请日:2021-05-14
Applicant: 桂林电子科技大学
IPC: C04B35/495 , C04B35/622
Abstract: 本发明提供了一种透明荧光铁电陶瓷材料,所述透明荧光铁电陶瓷材料的化学式为:[0.95K0.5Na0.5NbO3‑0.05Sr(Bi0.5Nb0.5)O3]‑0.1%Ho‑x%Yb,x=0.5~2。本发明提供的陶瓷材料以K0.5Na0.5NbO3(KNN)铁电陶瓷为基体,固溶第二组元Sr(Bi0.5Nb0.5)O3,提高了陶瓷材料的透光性能;在此基础上掺杂稀土元素Ho和Yb使陶瓷材料具有发光性能;并通过控制陶瓷材料中各种成分的含量,使得陶瓷材料具有出色的透明和发光性能,同时兼具一定的铁电性。实验结果表明,本发明提供的陶瓷材料在保持一定透光性能的同时具备良好光致发光性能,且具有一定的铁电特性。
-
公开(公告)号:CN113121226A
公开(公告)日:2021-07-16
申请号:CN202110481507.3
申请日:2021-04-30
Applicant: 桂林电子科技大学
IPC: C04B35/495 , C04B35/622 , H01G7/06
Abstract: 本发明属于陶瓷材料技术领域,特别涉及一种光介电铁电陶瓷材料及其制备方法和应用。本发明提供了一种光介电铁电陶瓷材料,所述光介电铁电陶瓷材料的化学通式为(1‑x)(K0.5Na0.5)NbO3‑xA(MyNb1‑y)O3‑δ,x为0.005~0.10,y为0.01~0.5;A为AII族元素中的一种或多种,M为过渡金属元素中的一种或多种。本发明通过过渡金属的引入降低(K0.5Na0.5)NbO3材料的带隙,实现半导化,从而使光介电铁电陶瓷材料具有高的光介电调谐率,使光介电铁电陶瓷材料的介电常数在光激励时产生改变,实现光对光介电铁电陶瓷材料介电性能的非接触式调控。
-
公开(公告)号:CN110165064A
公开(公告)日:2019-08-23
申请号:CN201910456855.8
申请日:2019-05-29
Applicant: 桂林电子科技大学
Abstract: 本发明涉及半导体发光器件技术领域,尤其涉及具有梯度能级空穴调控有机电致发光器件,包括依次叠接的阳极、第一空穴注入层、第二空穴注入层、发光层、电子注入层和金属阴极,所述第一空穴注入层为PEDOT:PSS或者PEDOT:PSS+V2O5复合材料,第二空穴注入层为C3N4薄膜,发光层为TPBi,电子注入层为LiF,金属阴极为Al。本发明的具有梯度能级空穴调控有机电致发光器件,利用V2O5掺杂PEDOT:PSS的复合薄膜PEDOT:PSS+V2O5和二维材料C3N4的各自优点,利用其合适的能级结构有效地构筑具有梯度能级的空穴注入传输体系,从而调节了载流子平衡,器件具有良好的性能。
-
公开(公告)号:CN104891821B
公开(公告)日:2017-08-11
申请号:CN201510220449.3
申请日:2015-05-04
Applicant: 桂林电子科技大学
IPC: C03C17/22
Abstract: 本发明公开了一种应用不同浓度的前驱液制备多层BiFeO3薄膜的方法,所述方法包括:(1)将Bi(NO3)3·5H2O、Fe(NO3)3·5H2O溶于乙二醇甲醚和乙酸酐混合而成的混合液中,分别配置出高浓度的A前驱液和低浓度的B前驱液。(2)在基片上旋涂A前驱液或B前驱液,并将其烘烤、冷却,得到单层BiFeO3薄膜。(3)在单层BiFeO3薄膜上再旋涂B前驱液或A前驱液,并将其烘烤、冷却,得到双层BiFeO3薄膜。(4)根据厚度需要交替旋涂A前驱液或B前驱液并烘烤、冷却,得到多层BiFeO3薄膜。本发明通过高、低浓度层交替搭配来提高薄膜的致密性进而降低薄膜的漏电流,提高薄膜的铁电性能,而且可以保证薄膜的制备效率。
-
-
-
-
-
-
-
-
-