-
公开(公告)号:CN118880207A
公开(公告)日:2024-11-01
申请号:CN202410921665.X
申请日:2024-07-10
Applicant: 哈尔滨工业大学
IPC: C22F1/18
Abstract: 一种调控含硅钛基复合材料中硅化物析出尺寸的热机械方法,它涉及钛基复合材料领域,本发明的方法是将切割打磨后烧结态非连续增强含硅钛基复合材料置于热机械机中,使得材料沿变形方向温度分布均匀;在温度为600~800℃的范围内,压力为100~300MPa的条件下,进行热机械处理,待达到规定的变形量后停止热机械处理,卸载并空冷降温,即完成。本发明通过同时调整热机械处理工艺中温度与应力两个参数,实现了对钛基复合材料中硅化物析出尺寸的精确调控,拓宽了硅化物析出尺寸的定制区间。本发明应用于原位自生钛基复合材料组织设计与调控技术领域。
-
公开(公告)号:CN118668087A
公开(公告)日:2024-09-20
申请号:CN202410737361.8
申请日:2024-06-07
Applicant: 哈尔滨工业大学
Abstract: 一种多相多尺度的AlSiMgNiCu高硅铝基复合材料的制备方法,涉及一种高硅铝基复合材料的制备方法。本发明是要解决目前高硅铝基复合材料由于粗大的初生Si相影响其性能,机械加工难度大,制造成本高的技术问题。本发明通过合理的成分设计,添加一定含量的变质剂和细化剂,在高压条件下对半固态浆料进行挤压铸造,最终获得具有8种析出相的AlSiMgNiCu高硅铝基复合材料,有效抑制了粗大初生Si相的形成,且Si相尺寸明显细化,尺寸约为20μm,同时α‑Al基体以及其他析出相也得到了不同程度的细化,形成一种均匀分布的多相多尺度显微组织结构。
-
公开(公告)号:CN118616849A
公开(公告)日:2024-09-10
申请号:CN202410829116.X
申请日:2024-06-25
Abstract: 一种用于核电压水反应堆主管道316L‑In718功能梯度材料的电弧增材制造方法,它涉及增材制造领域,本发明要解决现有技术在制备材料过程中存在的异种金属层间结合能力差、组分分布不均匀、尺寸精度差和应力腐蚀开裂等问题。本发明采用同轴送丝电弧增材制造的方法制备得到核电压水反应堆主管道316L‑In718功能梯度材料,其中,同轴送丝的焊丝为316L‑In718绞股焊丝。本发明可实现大型核电压水反应堆主管道复杂结构316L‑In718功能梯度材料相对连续的组分梯度过渡,达到提高沉积效率、成形尺寸精度、抗腐蚀性能和层间结合能力的效果。
-
公开(公告)号:CN118326189A
公开(公告)日:2024-07-12
申请号:CN202410392609.1
申请日:2024-04-02
Applicant: 哈尔滨工业大学
IPC: C22C1/05 , C22C1/059 , C22C47/14 , B22F9/04 , B22F3/105 , B22F3/14 , B22F3/20 , C22C21/00 , C22C32/00 , C22C49/06 , C22C49/14 , C22C101/10
Abstract: 一种纳米晶夹杂构型铝基复合材料纳米晶区分布的调控方法和应用。本发明属于金属基复合材料制备领域。本发明的方法:将硬质纳米粒子与铝粉低速混合至均匀后进行高能量球磨,在球磨过程中加入过程控制剂并控制其加入量,得到纳米晶集合体;将柔性纳米碳材料与铝粉低速混合至均匀后进行中等能量球磨,在球磨过程中加入过程控制剂并控制其加入量,得到微纳米晶集合体;将纳米晶集合体、微纳米晶集合体与铝粉按一定体积比进行低速球磨,在球磨过程中加入过程控制剂并控制其加入量,完成对复合材料纳米晶区分布的调控。本发明通过对过程控制剂含量的控制实现了对构型复合材料的性能优化,成本低,工艺简单,过程可控,适合于工业化生产。
-
公开(公告)号:CN118287679A
公开(公告)日:2024-07-05
申请号:CN202410421394.1
申请日:2024-04-09
Applicant: 哈尔滨工业大学
IPC: B22F9/08 , B22F1/142 , C22C1/02 , C22C19/03 , C22C22/00 , C22C30/00 , C22C30/04 , C22F1/02 , C22F1/10 , C22F1/16 , H01F1/01 , H01F41/00
Abstract: 一种具有宽铁磁态奥氏体温区的磁制冷工质制备方法,它涉及制冷工质领域,本发明要解决Ni‑Mn‑M‑N(X=Sn、In、Sb;N=Co、Fe)合金块体材料中普遍存在的制冷温区窄、磁热性能有待提高、应用过程中热传导与热交换难的问题。本发明方法:按照化学通式Ni50‑yMn50‑xMxNy称取合金,真空熔炼铸锭;再均匀化热处理,然后通过雾化处理得到合金微米颗粒,最后在373‑773K条件下低温热处理。本发明方法通过较低温度的热处理改善合金性能,扩大合金的制冷工作区间、提高磁熵变,从而提高合金的磁热效应,使其作为磁制冷工质在家庭、工业制冷方面更具应用潜力。
-
公开(公告)号:CN118272744A
公开(公告)日:2024-07-02
申请号:CN202410385496.2
申请日:2024-04-01
Applicant: 哈尔滨工业大学
IPC: C22C47/08 , C22C47/06 , C22C49/06 , C22C49/14 , B22D23/04 , B22D46/00 , C22F1/04 , B21C23/00 , C22C101/22
Abstract: 一种高性能准连续层状混杂陶瓷相增强铝基复合材料及其制备方法和应用。本发明属于铝基复合材料及其制备技术领域。本发明的方法:将Ti粉末和TiB2粉末混合球磨,得到Ti/TiB2混合粉末,然后制成浆料;将浆料在特定温度下进行定向冷冻,然后进行真空冷冻干燥再进行阶段烧结,得到层状陶瓷预制体;采用真空三级加压浸渗,随后对其进行热挤压,得到准连续层状混杂陶瓷相增强铝基复合材料。本发明的方法实现了对TiBw含量、尺寸以及复合材料层厚比精确定制,同时通过热挤压减少了复合材料内部气孔等缺陷,改变了复合材料的微观组织形貌,此外还细化了Al基体晶粒以及层状结构的厚度,从而提高了复合材料的强度和塑性。
-
公开(公告)号:CN114713832B
公开(公告)日:2024-05-03
申请号:CN202210444936.8
申请日:2022-04-26
Applicant: 哈尔滨工业大学
Abstract: 本发明提供了一种高硬度耐磨球形钛基复合粉末及其制备方法,该高硬度耐磨球形钛基复合粉末的制备方法包括如下步骤:(1)将钛基材料和陶瓷粉末混合均匀、静置,得到混合粉末;(2)将混合粉末进行真空热压烧结处理,得到钛基复合材料;(3)对钛基复合材料进行旋转制粉,得到高硬度耐磨球形钛基复合粉末。本发明制备的高硬度耐磨球形钛基复合粉末陶瓷增强相含量高且分布均匀、粉末粒径分布范围窄、球形度高、流动性好、硬度高,该高硬度耐磨球形钛基复合粉末通过激光熔覆制备成熔覆层的硬度高、耐磨性能优异。
-
公开(公告)号:CN114918413B
公开(公告)日:2024-03-29
申请号:CN202210534909.X
申请日:2022-05-17
Applicant: 哈尔滨工业大学
Abstract: 本发明涉及烧结技术领域,特别涉及一种高通量制备块体的装置、系统和方法。一种高通量制备块体的装置,包括多个层间压板和多个层内挡片;所述层间压板的制备材料包括耐高温硬质合金、石墨和碳/碳复合材料中的至少一种;所述层内挡片的制备材料包括耐高温塑性合金和金属钛中的至少一种;所述层间压板为板状,所述层内挡片为片状,所述层内挡片设置于两个所述层间压板之间并与层间压板配合形成多个封闭空间,所述封闭空间用于装填粉末。本发明实施例提供了一种高通量制备块体的装置、系统和方法,能够通过一次烧结处理得到多个块体,且块体尺寸控制较为良好,表面质量好,而且即使在边角处的样品也不存在明显的缺陷,样品之间易于拆开。
-
公开(公告)号:CN114603144B
公开(公告)日:2023-12-29
申请号:CN202210160072.7
申请日:2022-02-22
Applicant: 哈尔滨工业大学
Abstract: 一种多孔TiAl夹芯结构复合材料及其制备方法。本发明属于TiAl基复合材料及其制备领域。本发明目的在于解决多孔TiAl材料强度不高而应用范围受限的技术问题。本发明的多孔TiAl夹芯结构复合材料从上至下依次为上面板层、第一Ti/Al界面扩散层、芯材、第二Ti/Al界面扩散层和下面板层,其中上、下面板层均为钛基板材,芯材为多孔TiAl合金。本发明的多孔TiAl夹芯结构复合材料通过烧结浸渗法直接制备而成,通过添加两侧钛面板以及形成芯材/面板界面的扩散连接大幅提高多孔TiAl材料的强度。以海绵钛为原料采用烧结浸渗法在热压烧结炉中直接制备出多孔TiAl夹芯结构复合材料,孔隙率高,且方法简单高效又成本低廉。
-
公开(公告)号:CN117026036A
公开(公告)日:2023-11-10
申请号:CN202311035874.6
申请日:2023-08-17
Applicant: 哈尔滨工业大学
Abstract: 本发明公开了一种高导热高强度变形镁合金及其制备方法,属于镁合金技术领域。所述高导热高强度变形镁合金为Mg‑Mn‑X合金体系;其中,X为轻稀土元素,含量为0.5~5.0wt.%,Mn的含量为0.5~4.0wt.%;余量为Mg和不可避免的杂质。本发明通过添加适当的合金化元素,利用简单的合金熔炼、挤压热变形即可得到综合性能优异的高导热高强度变形镁合金,制备的高导热高强度变形镁合金协调了镁合金热导率和强度不相匹配的问题。
-
-
-
-
-
-
-
-
-