-
公开(公告)号:CN114327676A
公开(公告)日:2022-04-12
申请号:CN202111632984.1
申请日:2021-12-28
Applicant: 北京航天自动控制研究所
Abstract: 本发明涉及一种面向卷积神经网络的高可靠加速器,包括指令分发模块和与其连接、受其控制的加载模块、路由模块、计算模块、冗余控制模块、和卸载模块;在指令分发控制模块的控制下,所述加载模块从外部加载输入特征数据和卷积核数据;路由模块将加载的数据分配给计算模块;所述计算模块中包括多个并列的计算核心,每个计算核心均用于接收分配数据进行卷积神经网络加速处理,输出处理结果;冗余控制模块将所述计算模块输出的多路计算结果输出到所述卸载模块,通过卸载模块将卷积神经网络加速处理结果卸载输出。本发明实现了卷积神经网络的加速处理,并兼顾卷积神经网络的高速处理和高可靠性处理的要求。
-
公开(公告)号:CN114167747B
公开(公告)日:2024-04-09
申请号:CN202111247260.5
申请日:2021-10-26
Applicant: 北京航天自动控制研究所
IPC: G05B17/02
Abstract: 本发明公开了一种飞行控制算法一体化训练平台的构建方法,属于机器学习技术领域,能够保证飞行控制算法训练,以及验证设计的通用性和易用性,进而提高了飞行控制算法一体化训练和验证设计的效率。方法包括:构建视景仿真模型;所述视景仿真模型展示飞行控制算法的一体化训练过程中的飞行状态信息;构建执行所述飞行控制算法的控制器与可视化飞行仿真环境之间数据交互的机器学习框架模块,并通过所述机器学习框架模块由所述可视化飞行仿真环境向所述控制器发送飞行状态信息,由所述控制器向所述可视化飞行仿真环境发送控制指令。
-
公开(公告)号:CN116048782A
公开(公告)日:2023-05-02
申请号:CN202211589824.8
申请日:2022-12-10
Applicant: 北京航天自动控制研究所
Inventor: 王晓峰 , 路坤锋 , 周辉 , 谢宇嘉 , 赵雄波 , 盖一帆 , 蒋彭龙 , 李晓敏 , 李超然 , 吴松龄 , 林平 , 董文杰 , 弥寒光 , 黄鹂 , 吴敏 , 赵冠杰 , 李杰 , 李杨珺 , 王森 , 杨庆军 , 靳蕊溪 , 林玉野 , 徐天运
IPC: G06F9/50 , G06N3/063 , G06N3/0464
Abstract: 本公开属于人工智能处理器技术领域,具体而言涉及一种基于Winograd的深度学习处理器核心模组,包括:控制模块,接收外部控制单元传递的指令,并产生控制信号;d‑Buffer模块,缓存来及外部的输入特征,所述d‑Buffer模块与所述控制模块相连,所述控制模块控制d‑Buffer模块每个时钟周期的动作;和PE阵列,包括n个独立的计算单元,每个计算单元与d‑Buffer模块相连,所述计算单元计算每个输出通道的卷积,PE阵列进行n个输出通道的并行计算,所述控制模块控制PE阵列每个时钟周期的动作。本公开通过Winograd快速卷积方法解决基于FPGA的深度学习处理器的性能普遍受限于FPGA片上DSP资源数量的限制的问题,降低DSP数量对深度学习处理器性能的限制。
-
公开(公告)号:CN115878956A
公开(公告)日:2023-03-31
申请号:CN202211584551.8
申请日:2022-12-10
Applicant: 北京航天自动控制研究所
Inventor: 王晓峰 , 盖一帆 , 周辉 , 赵雄波 , 路坤锋 , 蒋彭龙 , 李晓敏 , 李超然 , 谢宇嘉 , 赵冠杰 , 林平 , 董文杰 , 吴松龄 , 弥寒光 , 黄鹂 , 吴敏 , 靳蕊溪 , 李杨珺 , 王森 , 李杰 , 杨庆军 , 林玉野
Abstract: 本公开属于专用算法硬件电路技术领域,具体而言涉及一种基于Winograd的相关算法加速器计算系统,包括:张量变换单元,包括基准图变换单元,对基准图张量块进行Winograd变换,得到第一张量块;实时图变换单元,对实时图张量块进行Winograd变换,得到第二张量块;和结果变换单元,对第一矩阵进行Winograd反变换,得到第二矩阵;逐点相乘单元,将所述第一张量块和所述第二张量块进行逐点相乘,得到第三张量块;通道累加单元,将所述第三张量块沿通道方向进行累加,得到第一矩阵;以及偏置累加单元,将所述第二矩阵与偏置矩阵逐点相加,得到过程矩阵。通过上述设置以提高计算速率和计算连续性。
-
公开(公告)号:CN114167748A
公开(公告)日:2022-03-11
申请号:CN202111247331.1
申请日:2021-10-26
Applicant: 北京航天自动控制研究所
IPC: G05B17/02
Abstract: 本发明公开了一种飞行控制算法一体化训练平台,属于机器学习技术领域,能够保证飞行控制算法训练,以及验证设计的通用性和易用性,进而提高了飞行控制算法一体化训练和验证设计的效率。平台包括:控制器、机器学习框架模块和可视化飞行仿真环境;其中:所述可视化飞行仿真环境包括动力学模型、视景仿真模型和调用接口;所述可视化飞行仿真环境通过所述调用接口与所述机器学习框架模块相连接;所述机器学习框架模块用于实现所述控制器和所述可视化飞行仿真环境之间的数据交互;所述视景仿真模型用于展示飞行控制算法的一体化训练过程中的飞行状态信息;所述动力学模型与所述视景仿真模型之间建立通讯连接。
-
公开(公告)号:CN114167747A
公开(公告)日:2022-03-11
申请号:CN202111247260.5
申请日:2021-10-26
Applicant: 北京航天自动控制研究所
IPC: G05B17/02
Abstract: 本发明公开了一种飞行控制算法一体化训练平台的构建方法,属于机器学习技术领域,能够保证飞行控制算法训练,以及验证设计的通用性和易用性,进而提高了飞行控制算法一体化训练和验证设计的效率。方法包括:构建视景仿真模型;所述视景仿真模型展示飞行控制算法的一体化训练过程中的飞行状态信息;构建执行所述飞行控制算法的控制器与可视化飞行仿真环境之间数据交互的机器学习框架模块,并通过所述机器学习框架模块由所述可视化飞行仿真环境向所述控制器发送飞行状态信息,由所述控制器向所述可视化飞行仿真环境发送控制指令。
-
-
-
-
-