-
公开(公告)号:CN109558873B
公开(公告)日:2019-11-05
申请号:CN201811467778.8
申请日:2018-12-03
Applicant: 哈尔滨工业大学
Abstract: 一种基于变样本栈式自编码网络的模式识别方法,属于大数据模式识别领域。现有的模式识别方法在数据维度逐渐增高时,会出现模式识别精度和效率下降问题的问题。一种基于变样本栈式自编码网络的模式识别方法,一、通过变样本栈式自编码网络滤除高维空间样本中噪声,映射成低维空间去噪样本集合;二、利用步骤一获得的低维空间去噪样本集合对样本训练分类器进行训练,得到低维空间去噪样本集合中的典型样本集合;三、基于步骤二获得的典型样本集合,采用逆映射到高维空间获得高维空间典型样本集合,并利用待测试样本与高维空间典型样本集合的相似度识别方法进行模式识别,完成待测试样本的类别判定。本发明与其它算法进行对比,提高了分类准确率。
-
公开(公告)号:CN108182452B
公开(公告)日:2018-11-20
申请号:CN201711472261.3
申请日:2017-12-29
Applicant: 哈尔滨工业大学(威海)
Abstract: 本发明涉及一种基于分组卷积自编码器的航空发动机故障检测方法及系统,其中方法包括:变量分组步骤、基于变量之间的相关性将飞机通讯寻址与报告系统数据的变量分成多个变量组;特征提取步骤、采用卷积去噪自动编码器模型独立地提取每个变量组的特征;故障识别步骤、将所有变量组的特征融合起来形成特征向量,基于该特征向量采用支持向量机来识别故障样本。本发明不需要大量的专家知识经验,避免了繁琐的数据预处理工作,在没有大量良好的有标签样本的情况下仍然具有较好的综合故障检测性能,且鲁棒性好,适合于工程实践,计算与时间成本较低。
-
公开(公告)号:CN107886126B
公开(公告)日:2018-11-20
申请号:CN201711102389.0
申请日:2017-11-10
Applicant: 哈尔滨工业大学(威海)
Abstract: 本发明涉及一种基于动态集成算法的航空发动机气路参数预测方法及系统,其中方法包括:基于迭代算法对训练样本集进行学习得到基学习机,并使用基学习机对测试样本集进行预测,得到每个基学习机的预测结果;在所述训练样本集中选择测试样本的近邻样本,评估每个基学习机在近邻样本的局部性能动态确定每个基学习机的权值;基于所述每个基学习机的权值,利用加权核密度估计将每个基学习机的预测结果集成得到最终预测结果。本发明通过量化评估各学习机的局部性能,提出了动态加权核密度估计组合方法,可用于对航空发动机气路参数序列的预测任务中,不受离群值和样本不对称分布的影响,实验结果表明能够有效提高集成学习算法的预测精度。
-
公开(公告)号:CN106529715B
公开(公告)日:2018-07-06
申请号:CN201610957362.9
申请日:2016-10-25
Applicant: 哈尔滨工业大学
Abstract: 基于马尔科夫决策过程的航空发动机维修策略优化方法,本发明涉及航空发动机维修策略优化方法。本发明是为了解决现有技术没有考虑随机因素的影响并且仅针对单因素进行维修策略优化的问题。本发明步骤为:步骤一:航空发动机状态空间确定;步骤二:根据步骤一进行航空发动机维修动作的确定;步骤三:根据步骤二确定的航空发动机维修动作确定各动作状态转移概率矩阵;步骤四:根据步骤二和步骤三进行成本矩阵的确定及维修策略优化。本发明考虑了实际运维过程中的随机因素,并且能够在较长的寿命期内对航空发动机进行多次维修策略的滚动优化。能够为航空发动机全寿命范围内的维修策略优化提供基础支持。本发明应用于航空发动机维修优化技术领域。
-
公开(公告)号:CN108182452A
公开(公告)日:2018-06-19
申请号:CN201711472261.3
申请日:2017-12-29
Applicant: 哈尔滨工业大学(威海)
CPC classification number: G06K9/6269 , G06N3/0454
Abstract: 本发明涉及一种基于分组卷积自编码器的航空发动机故障检测方法及系统,其中方法包括:变量分组步骤、基于变量之间的相关性将飞机通讯寻址与报告系统数据的变量分成多个变量组;特征提取步骤、采用卷积去噪自动编码器模型独立地提取每个变量组的特征;故障识别步骤、将所有变量组的特征融合起来形成特征向量,基于该特征向量采用支持向量机来识别故障样本。本发明不需要大量的专家知识经验,避免了繁琐的数据预处理工作,在没有大量良好的有标签样本的情况下仍然具有较好的综合故障检测性能,且鲁棒性好,适合于工程实践,计算与时间成本较低。
-
公开(公告)号:CN107944623A
公开(公告)日:2018-04-20
申请号:CN201711175073.4
申请日:2017-11-22
Applicant: 哈尔滨工业大学
Abstract: 一种基于酵母菌出芽繁殖的优化方法及其应用,本发明涉及机队保有率优化方法,为了解决现有技术当机队保有率优化模型最优解不唯一时,无法获得最优的机队保有率的问题。本发明将培养基视为优化问题连续型解的区域约束;接种酵母菌过程视为初始解生成过程;酵母菌在培养基上的出芽繁殖视为解的优化过程:繁殖出的酵母菌落入培养基内为优解,可存活并可继续繁殖;否则则为劣解,不能存活也不可能继续繁殖。考虑到优化问题的连续型最优解可能是分段连续或者初始解落入到非培养基的情况,让处于非培养基中的劣解可以寻找并迁移到最优繁殖区域进行繁殖。繁殖出的优解集合所覆盖的区域就是优化问题的连续型最优解。本发明用于飞机维修管理领域。
-
公开(公告)号:CN107577902A
公开(公告)日:2018-01-12
申请号:CN201710995498.3
申请日:2017-10-23
Applicant: 哈尔滨工业大学
IPC: G06F17/50
Abstract: 一种基于UKF的飞机疲劳结构剩余寿命预测方法,本发明涉及基于UKF的飞机疲劳结构剩余寿命预测方法。本发明为了解决现有方法飞机疲劳结构剩余寿命低的缺点。本发明包括:步骤一:基于Paris疲劳裂纹扩展公式,建立状态空间评估模型;步骤二:对步骤一建立的状态空间评估模型利用无迹卡尔曼滤波算法进行滤波,得到准确的状态参数向量xk;步骤三:利用步骤二得到的准确的状态参数向量xk,进行结构的裂纹扩展剩余寿命预测。通过对比实验可知,本发明算法的预测结果优于EKF算法,且预测得到的RUL绝对相对误差小于10%。本发明应用于飞机疲劳结构剩余寿命预测领域。
-
公开(公告)号:CN106355253A
公开(公告)日:2017-01-25
申请号:CN201610486895.3
申请日:2016-06-27
Applicant: 哈尔滨工业大学(威海)
Abstract: 本发明涉及航空发动机维修技术领域,具体的说是一种能够有效提高航空发动机运行效率,降低维护成本的航空发动机最优运行性能区间确定方法,其特征在于以单位运行维修成本最小为优化目标,建立面向全成本的航空发动机最优运行性能区间确定模型,用一个单调连续函数表示航空发动机性能参数的衰退规律,本发明与现有技术相比,从航空发动机运行维修全成本出发考虑其最优方案,航空发动机性能对其运行成本有很大影响,通过从全成本角度确定航空发动机最优运行性能区间,提高对航空发动机运行维修效率、降低运行维修成本。
-
公开(公告)号:CN102288412B
公开(公告)日:2013-05-01
申请号:CN201110113344.X
申请日:2011-05-04
Applicant: 哈尔滨工业大学
IPC: G01M15/00
Abstract: 本发明提供了一种基于损伤基线的航空发动机硬件损伤分析与寿命预测方法。根据发动机手册规定及发动机构型定义规范化的损伤描述规则,建立损伤数据库;建立基于线性退化轨道的损伤基线模型;对机队发动机的损伤数据进行线性拟合,利用极大似然估计求解损伤基线模型参数估计值;使用新获得的单台发动机的损伤数据更新损伤迹象模型,得到单台发动机的损伤增长模型;对于求得的单台发动机的硬件损伤增长模型,求得其概率密度分布函数,即发动机剩余在翼时间的概率密度分布函数,取其中值为发动机的剩余在翼寿命。本发明使得航空公司根据发动机硬件损伤对发动机的拆发时机进行预测成为了可能,进而能为发动机的维修计划制定提供重要的决策支持。
-
公开(公告)号:CN100503150C
公开(公告)日:2009-06-24
申请号:CN200610151080.6
申请日:2006-11-29
Applicant: 哈尔滨工业大学
Abstract: 五自由度混联数控机床,它涉及一种五自由度数控机床。针对现有六自由度并联机床在加工空间复杂曲面零件,存在结构复杂、工作空间与机构的体积比小、操作复杂、造价高的问题。本发明的固定平台(2)位于运动平台(3)的上方且二者之间通过四个伸缩连杆(4)连接,四个伸缩连杆(4)的上端与第一伺服电机(1)传动连接,连接轴(7)装在运动平台(3)下端的支壁上,连接轴(7)上装有电主轴(6),电主轴(6)的下端固定装有刀具(8),第二伺服电机(5)与连接轴(7)传动连接。本发明通过第一伺服电机驱动四个伸缩连杆实现运动平台的三维移动和一维转动,同时第二伺服电机驱动电主轴和刀具相对于运动平台转动,因此该混联数控机床可实现对空间复杂曲面零件的加工作业。
-
-
-
-
-
-
-
-
-