Abstract:
A method for transmission of signal is provided, the method comprising the steps of receiving one or more modulating signals, generating one or more modulated sinusoidal carrier waves with zero side bands, including one or more sine wave cycles at carrier frequency that have a predetermined one or more properties, defined for complete cycle at the beginning of each sine cycle at one or more zero voltage crossing points in accordance with the one or more values of the one or more modulating signals. The one or more predetermined properties to change, is selected from group of amplitude, frequency, phase, time period and combinations thereof.
Abstract:
An audio system includes a processor including an input configured to: receive a baseband audio signal and modulate the baseband audio signal to create a modulated audio signal comprising audio signal frequency components in a first frequency range; clip the modulated audio signal to create a clipped, modulated audio signal the clipped modulated audio signal comprising the audio signal frequency components in the first range and further comprising distortion frequency components outside the first frequency range. The system can further be configured to filter the clipped, modulated audio signal to remove frequency components outside the first frequency to remove distortion components outside that frequency range.
Abstract:
Some embodiments disclosed herein relate to a transmitter. The transmitter includes a digital modulator adapted to provide a digital modulated RF signal based on a multi-bit representation of data and a multi-bit representation of a carrier wave. A digital-to-analog converter (DAC) is adapted to generate an analog modulated RF signal based on the digital modulated RF signal. A resonant circuit coupled to an output of the DAC and adapted to filter undesired frequency components from the analog modulated RF signal.
Abstract:
A digital amplitude modulation device includes power amplifiers, a compositor, a filter, a measurement unit, a protection unit, and a controller. The power amplifiers are arranged in parallel and amplify an input signal in accordance with ON control and stop output in accordance with OFF control. The filter suppresses an unnecessary component to generate an AM signal. The measurement unit measures a measurement value between the filter and a signal output terminal and output the AM signal generated by the filter. The protection unit includes a calculator and a first processing unit. The calculator is formed from an analog circuit and calculates an evaluation value based on the measurement value. The first processing unit is formed from an analog circuit and generates a first control signal by referring to the evaluation value. Upon receiving the first control signal, the controller OFF-controls the power amplifiers.
Abstract:
A method of generating a transmission signal may include mixing a baseband signal assigned for transmission within a narrow frequency range (“assigned narrow frequency range”) included in a wireless communication channel to produce a shifted signal. The shifted signal may have a shifted frequency that is based on a shift from the assigned narrow frequency range toward a center frequency of the wireless communication channel by a frequency offset. The method may further include shifting a modulation frequency of a modulating signal toward the assigned narrow frequency range frequency range and away from the center frequency by the frequency offset. Additionally, the method may include mixing the shifted signal with the modulating signal to produce a transmission signal having a transmission frequency within the assigned narrow frequency range.
Abstract:
A system, method and node for modulation and coding scheme adjustment for a Long Term Evolution (LTE) shared Data Channel. The method determines an actual number of orthogonal frequency division multiplexing (OFDM) symbols, NOS utilized for the shared Data Channel. A modulation order for transmission of data on the shared Data Channel is increased when the actual number of OFDM symbols NOS is less than 11 and decreased when NOS is more than 11. A modulation and coding scheme field (IMCS) of a downlink control information of the shared Data Channel may also be determined. If 0≦IMCS+11−NOS≦28, the modulation order is modified by utilizing a factor of (IMCS+11−NOS) in a standardized modulation scheme. If it is determined that IMCS+11−NOS 28, the modulation order is set to 64 Quadtrative Amplitude Modulation (64QAM).
Abstract:
A method and apparatus for transmit signal pulse shaping. Automotive vehicle manufacturers that incorporate electronic components into an automotive vehicle must consider emission requirements masks that can be dependent on particular geographic markets as well as the other electronic components contained within a particular automotive vehicle design. A physical layer device is provided that can be configured to operate in multiple emissions configurations using configurable parameters.
Abstract:
A method for communicating data using a “burst protocol” includes enabling power to transmitters and receivers when needed to balance power consumption with latency and unscheduled communication. A transmitter transmits a plurality of packets indicative of substantially the same payload. Power then may be disabled to the transmitter. A first predetermined time is determined to enable a receiver. A second predetermined time is determined to disable the receiver. Power then may be enabled to the receiver based on the first predetermined time. The payload is output in response to receiving one or more of the plurality of packets. Power to the receiver is disabled based on the second predetermined time.
Abstract:
Systems and methods are provided for generating a modulated radio frequency (RF) output signal representing a baseband input signal. A digitizer is configured to sample the baseband input signal and produce an N-bit binary digital signal representing a scaled linear function of the signal amplitude. An RF signal source configured to produce an RF carrier signal. N amplifier paths each include at least one amplifier configured to receive the RF carrier signal as an input and provide a corresponding output RF signal. The amplifiers associated with each of the N amplifier paths are active only when a corresponding bit of the digital signal assumes a first value. A power combiner assembly is configured to combine the outputs of the plurality of amplifier paths to deliver the modulated RF output signal.
Abstract:
Embodiments of apparatuses, methods, and systems for a radio frequency amplification circuit providing for fast loadline modulation are generally described herein. Other embodiments may be described and claimed.