Abstract:
The present disclosure relates to an image processing device and method whereby higher encoding efficiency can be achieved.A prediction motion vector generating unit 76 uses peripheral motion vector information supplied thereto to generate multiple types of prediction motion vector information, and supplies each prediction motion vector information and code numbers assigned to the prediction motion vector information by a code number assigning unit 77 to a motion prediction/compensation unit 75. The code number assigning unit 77 supplies code number assignation information indicating which code numbers have been assigned to which prediction motion vector information, to a lossless encoding unit 66. the present technology can be applied to an image encoding device which performs encoding based on the H.264/AVC format, for example.
Abstract:
The invention relates to a method for predicting a movement vector (MVp1) of a partition (P1) of a current image (IN) from a plurality of n reference movement vectors associated respectively with n reference partitions that have been previously encoded and decoded. For a spatial prediction of one such vector, when the geometric shape of the current partition is different from that of k adjacent reference partitions (pr1, pr2, . . . prk), with k≤n, the movement vector of the current image partition is determined from a function of at least one reference movement vector belonging to a set of k reference movement vectors associated respectively with k adjacent reference partitions.
Abstract:
Several methods and systems for chroma residual data prediction for encoding blocks corresponding to video data are disclosed. In an embodiment, at least one coefficient correlating reconstructed luma residual samples and corresponding reconstructed chroma residual samples is computed for one or more encoded blocks of video data. Predicted chroma residual samples are generated for encoding a block of video data based on corresponding reconstructed luma residual samples and the at least one coefficient.
Abstract:
A method is provided that includes receiving pictures of a video sequence in a video encoder, and encoding the pictures to generate a compressed video bit stream that is transmitted to a video decoder in real-time, wherein encoding the pictures includes selecting a picture to be encoded as a delayed duplicate intra-predicted picture (DDI), wherein the picture would otherwise be encoded as an inter-predicted picture (P-picture), encoding the picture as an intra-predicted picture (I-picture) to generate the DDI, wherein the I-picture is reconstructed and stored for use as a reference picture for a decoder refresh picture, transmitting the DDI to the video decoder in non-real time, selecting a subsequent picture to be encoded as the decoder refresh picture, and encoding the subsequent picture in the compressed bit stream as the decoder refresh picture, wherein the subsequent P-picture is encoded as a P-picture predicted using the reference picture.
Abstract:
A moving picture coding method includes: making a determination as to whether or not to code all blocks in a current picture in the skip mode; setting, based on a result of the determination, a first flag indicating whether or not a temporally neighboring block is to be referenced, a value of a parameter for determining a total number of merging candidates, and a second flag for each block included in the current picture, the second flag indicating whether or not the block is to be coded in the skip mode; calculating, as a merging candidate, a neighboring block usable for merging; and coding an index which indicates a merging candidate to be used for coding of the current block and attaching the coded index to a bitstream.
Abstract:
The present disclosure relates to a method and apparatus for interpolating a reference picture and a method and apparatus for encoding/decoding a video using the same. The apparatus for interpolating the reference picture selects a plurality of filters for interpolating the reference picture and generates a reference picture having a target precision through a multi-stage filtering of the reference picture by using a plurality of filters. The compression efficiency of the video may be improved by interpolating a reference picture through the determination of a filter of a filter coefficient for interpolating the reference picture according to characteristics of the video and interpolating the reference picture through a multi-stage filtering or adaptively changing resolutions of motion vectors in the unit of predetermined areas.
Abstract:
Coding schemes for coding a spatially sampled information signal using sub-division and coding schemes for coding a sub-division or a multitree structure are described, wherein representative embodiments relate to picture and/or video coding applications.
Abstract:
Techniques described herein for coding video data include techniques for coding pictures partitioned into tiles, in which each of the plurality of tiles in a picture is assigned to one of a plurality of tile groups. One example method for coding video data comprising a picture that is partitioned into a plurality tiles comprises coding video data in a bitstream, and coding, in the bitstream, information that indicates one of a plurality of tile groups to which each of the plurality of tiles is assigned. The techniques for grouping tiles described herein may facilitate improved parallel processing for both encoding and decoding of video bitstreams, improved error resilience, and more flexible region of interest (ROI) coding.
Abstract:
A method of operating a depth sensor includes generating a first photo gate signal and second through fourth photo gate signals respectively having 90-, 180- and 270-degree phase differences from the first photo gate signal, applying the first photo gate signal and the third photo gate signal to a first row of a pixel array and the second photo gate signal and the fourth photo gate signal to a second row adjacent to the first row in a first frame using a first clock signal, and applying the first photo gate signal and the third photo gate signal to a first column of the pixel array and the second photo gate signal and the fourth photo gate signal to a second column adjacent to the first column in a second frame using a second clock signal.
Abstract:
A method of coding at least one image comprising the steps of splitting the image into a plurality of blocks, of grouping said blocks into a predetermined number of subsets of blocks, of coding each of said subsets of blocks in parallel, the blocks of a subset considered being coded according to a predetermined sequential order of traversal. The coding step comprises, for a current block of a subset considered, the sub-step of predictive coding of said current block with respect to at least one previously coded and decoded block, and the sub-step of entropy coding of said current block on the basis of at least one probability of appearance of a symbol.