Abstract:
Described are portable sensor fusion broadcast systems and devices including a communications module, a sensor fusion module, and a broadcast module.
Abstract:
A method for transmitting a broadcast signal, according to one embodiment of the present invention, may comprise the steps of: generating broadcast data for at least one broadcast service; generating first level signaling information including information describing attributes for the at least one broadcast service; generating second level signaling information including information for listing the at least one broadcast service; generating link layer packets including encoded broadcast data, the first level signaling information and the second level signaling information; and generating broadcast signals including the generated link layer packets.
Abstract:
Systems and methods are presented for insertion of assets into a stream of content (e.g., audio and/or video programming). Such assets may be targeted to network users separate from the surrounding content and deliveries thereof confirmed. Among other things, these systems and methods enable a new advertising paradigm based on guaranteed delivery of targeted commercial impressions. In this regard, the systems and methods generally provide assets with broadcast network programming (e.g., via actual insertion and/or switching to an asset channel) based on actual audience observations. For example, asset providers may wish to target assets for delivery according to specific audience classifications (e.g., gender, income level, locale, age, etc.). Programming providers, such as television programmers and radio programmers (e.g., standard tower broadcast radio and satellite radio), may receive information from broadcast network users and insert the assets into available bandwidth based on that information.
Abstract:
A method for automatically retuning a specific broadcast program for a mobile or transportable device includes instructing the mobile or transportable device to stay on a specific broadcast program; monitoring a radio signal of the specific broadcast program broadcast from a first fixed location radio communication facility, when the radio signal is weaker than a threshold value, the mobile or transportable device searches a database thereof to find radio communication parameters of a second fixed location radio communication facility that broadcasts the same program as the specific broadcast program and locates most closely to the current location of the mobile or transportable device; and operably retuning the mobile or transportable device in the specific broadcast program broadcast from the first fixed location radio communication facility to the second fixed location radio communication facility according to the radio communication parameters of the second fixed location radio communication facility.
Abstract:
The present invention proposes a method for transmitting a broadcast signal. The method for transmitting a broadcast signal according to the present invention proposes a system which can support a next-generation broadcast service in an environment where next-generation hybrid broadcasting using a terrestrial network and an Internet network is supported. In addition, the present invention proposes an efficient signaling scheme which can cover both the terrestrial broadcast network and the Internet network in the environment where the next-generation hybrid broadcasting is supported.
Abstract:
A method, reception device and host device are provided for aligning data streams at a multi-source receiver. Portions of data for a plurality of data streams are received at a reception device, the plurality of data streams carrying respective content, wherein the content of each data stream is misaligned with at least one other data stream with respect to time. The portions of data are forwarded to a host device to be stored in respective delay buffers. Indexing information is maintained for each of the delay buffers. The portions of data are forwarded to the host device along with the indexing information.
Abstract:
The present disclosure provides a satellite signal reception system comprising a low noise block down-converter for receiving satellite signals; a plurality of receivers configured to transmit the satellite signals from the low noise block down-converter to a display device; and a power splitter. The power splitter includes a first port electrically connected to the low noise block down-converter via a single cable; a plurality of second ports electrically connected to the plurality of receivers; a signal-distributing circuit electrically connecting the first port to the plurality of second ports; a plurality of power-supplying circuits electrically connecting the plurality of second ports to the first port; and a command-transmitting circuit electrically connecting the plurality of second ports to the first port, wherein the command-transmitting circuit includes a controller unit programmed to forward DiSEqC commands from the plurality of second ports to the first port in a first-in-first-out manner.
Abstract:
The invention relates to a method for receiving radio broadcast signals by means of a radio broadcast receiver and to a radio broadcast receiver designed for performing the method, wherein the broadcast receiver has at least two receiving units for different transmission techniques. The user selects a radio broadcast service of a first receiving unit of the at least two receiving units, and the selected radio broadcast service is then played back by the radio broadcast receiver. The other, second receiving unit for the different transmission technique of the radio broadcast receiver searches for an alternative radio broadcast service having preferably the same or comparable content during the playback of the radio broadcast service selected by the user, and the radio broadcast receiver automatically switches over to the second receiving unit having the alternative radio broadcast service if the first receiving unit cannot play back the selected radio broadcast service.
Abstract:
A broadcast receiving system capable of receiving mobile broadcast data and a method for processing broadcast signals are disclosed. The broadcast receiving system includes N number of antenna elements, a demodulator, a transmission parameter detector, and a block decoder. The N number of antenna elements receives each of the broadcast signals. The demodulator demodulates the broadcast signal having greater signal strength among each of the received broadcast signals. The transmission parameter detector detects the transmission parameter. The block decoder symbol-decodes the mobile broadcast service data included in the received broadcast signal in block units, based upon the detected transmission parameter.
Abstract:
Distributed antenna systems (DASs) can include a plurality of spatially separated remote antenna units. According to at least one example, a first group of remote antenna units can simulcast downlink transmissions on a first carrier with a particular sector identity (ID). A second group of remote antenna units, including at least one different remote antenna unit from the first group, can simulcast downlink transmissions on a second carrier with the same sector ID. According to at least one other example, two or more remote antenna units which include respective coverage areas that are non-adjacent to one another can be employed to simulcast downlink transmissions.