Abstract:
Provided is a method of manufacturing an optical disk having at least a cover layer, a first information recording surface, a first intermediate layer, a second information recording surface, a second intermediate layer, and a third information recording surface in order from a surface irradiated with a light beam on at least one side, wherein a numerical aperture of an objective lens that converges the light beam on any of the recording surface of the optical disk when information recording or information reproduction of the optical disk is performed is 0.91, standard value dk of each thickness from the surface to the first to third information recording surfaces is set on the premise of standard refractive index no, where k is 1, 2, 3, and a target value of each actual thickness from the surface to the first to third information recording surfaces is determined by a product of conversion coefficient g(n) depending on refractive index n from the first to third information recording surfaces, and standard value dk.
Abstract:
The present invention relates to an oxide sputtering target. By using the oxide sputtering target for formation of a protective film for an optical recording medium, a film, which has high storage stability and breakage resistance due to flexibility, can be deposited. Also, it can be utilized for direct-current sputtering and forms a less amount of particles during sputtering. The oxide sputtering target is made of an oxide sintered body including: with respect to a total content amount of metal compositions, 0.15 at % or more of one or more of Al, Ga, and In as a total content amount; 7 at % or more of Sn; and the balance Zn and inevitable impurities, wherein a total content amount of Al, Ga, In, and Sn is 36 at % or less.
Abstract:
An optical information recording medium includes: a substrate; two or more information signal layers provided on the substrate; and a cover layer provided on the information signal layers. At least one of the two or more information signal layers is provided with an inorganic recording layer including Pd oxide, a first protective layer provided on a first main surface of the inorganic recording layer, and a second protective layer provided on a second main surface of the inorganic recording layer. And at least one of the first protective layer and the second protective layer includes a compound oxide of Si oxide, In oxide and Zr oxide as a main component.
Abstract:
An optical disc of the present invention includes at least a light reflection layer and a light transmission layer formed on a substrate, wherein recording and reading are performed by a laser beam through the light transmission layer, the light transmission layer is formed from a cured film of a ultraviolet-curable composition containing an epoxy acrylate resin obtained by reacting a half ester compound (A), which is obtained from a lactone-adduct of a hydroxyalkyl (meth)acrylate (a1) and a dibasic acid anhydride (a2), and an epoxy resin (B), and the film thickness of the light transmission layer is from 50 to 150 μm.
Abstract:
An optical data storage disk includes a central substrate and on each side of the substrate a pair of metal/alloy recording layers separated by a transparent layer.
Abstract:
The present invention was made to improve the strength, such as heat resistance, of a disc comprising a biodegradable resin. The optical disc according to the present invention is formed by bonding two substrates, at least one of the substrates having an information recording area. One substrate disposed on a light incident side of the optical disc is composed of a biodegradable resin that is uncrystallized and allows light to transmit therethrough. Another substrate disposed away from the light incident side of the optical disc is composed of the biodegradable resin having higher crystallinity than that of the substrate disposed on a light incident side of the optical disc.
Abstract:
A description is given of a multi-stack optical data storage medium (20) for rewritable recording using a focused radiation beam (30) entering through an entrance face (16) of the medium (20) during recording. The medium (20) has a substrate (1). Deposited on a side thereof is a first recording stack (2) with a phase-change type recording layer (6). The first recording stack (2) is present at a position most remote from the entrance face (16). At least one further recording stack (3), with a phase-change type recording layer (12) is present closer to the entrance face (16) than the first recording stack (2). A metal reflective layer of Cu, transparent for the radiation beam (30), is present in the further recording stack (3) and has a thickness between 2 and 10 nm. A transparent spacer layer (9) is present between the recording stacks (2, 3). In such a way a metal reflective layer (14) with a high optical transmission combined with sufficient heat sink action is achieved which furthermore has a low chemical reactivity with adjacent layers.
Abstract:
A reproduction apparatus is provided for reproducing information stored on an optical medium. The apparatus includes a light source for illuminating the optical medium, the optical medium having at least one surface containing information stored thereon; a focusing arrangement operable to focus the light source on the at least one surface containing information thereon; and a detection arrangement operable to detect the information stored on the optical medium. The optical medium includes a first substrate having a first information surface; a semitransparent reflection film formed on the first information surface of the first substrate; a second substrate having a second information surface; a reflection film formed on the second information surface of the second substrate; and an adhesive layer for adhering the first substrate and the second substrate so that the first information surface and the second information surface face each other, wherein the thickness of the first substrate is at least 0.56 mm, the thickness of the adhesive layer is at least 30 μm, the total thickness of the first substrate and the adhesive layer is in the range of 0.59 mm to 0.68 mm, and the adhesive layer includes a thermosetting material.
Abstract:
An optical information recording medium includes an oxide/nitride dielectric film that shows a film forming rate higher than that of SiON film and hence is adapted to mass production. The recording medium shows little change in the reflectivity after a long environment test. A first dielectric layer made of ZnS—SiO2, an oxide/nitride dielectric layer made of silicon-nickel oxide/nitride, a second dielectric layer made of ZnS—SiO2, a first interface layer made of GeN, a recording layer made of Ge2Sb2Te5, a second interface layer made of GeN, a third dielectric layer made of ZnS—SiO2 and a reflection layer are laid sequentially on a transparent substrate in the above mentioned order. The oxide/nitride dielectric layer is formed by reactive sputtering in a mixed gas atmosphere containing Ar gas, O2 gas and N2 gas. The refractive index of the oxide/nitride dielectric layer is made lower than that of the first dielectric layer and that of the second dielectric layer and the light absorption coefficient of the recording layer is made lower in an amorphous state than in a crystalline state.
Abstract:
An optical element according to the present invention has a thin film, in which single-wall carbon nanotubes are laminated, and utilizes a saturable absorption function of the single-wall carbon nanotubes. Further, in a method for producing the optical element according to the present invention, the thin film is formed by spraying, to a body to be coated, a dispersion liquid prepared by dispersing the single-wall carbon nanotubes in a dispersion medium. Accordingly, a nonlinear optical element, which can operate in an optical communication wavelength region and which is extremely inexpensive and efficient, and a method for producing the optical element can be provided.