Abstract:
Methods and apparatus are provided providing users with the ability to create and produce multimedia devices. In one aspect of the present invention, users are provided with the capability to easily and seamlessly create slideshows using multiple forms of graphic elements instead of just still pictures. In another aspect of the present invention, users are provided with the capability to create and modify the DVD menu that is required for DVDs to function properly on conventional DVD players. In still another aspect of the present invention, users are provided with an intuitive graphic interface that simply and clearly explains the trade offs the user must make in deciding which mode to record the DVD.
Abstract:
Disclosed is an optical disc with a first area to store data for playback and that is reflective or opaque to visible light, and a second area that is transparent to visible light and includes first and second concentric rings. In one embodiment, a method of printing information on the optical disc includes: printing an inverse first text pattern in the first ring during a first printing on a first side, where the first text pattern is formed in reverse as viewed from the first side; printing a second text pattern in the second ring during a second printing on the first side, where the second text pattern is correctly visible from the first side; and printing, during the second printing, a first solid pattern to overlay at least a portion of the first text pattern, where the first text pattern is correctly visible as viewed from a second side.
Abstract:
The optical disc device has a circuit which forms a focus error signal for focus servo control based on reflection light from an optical disc exposed to laser light. Also, the device has a data processing unit which can control by feedback a position to which an objective lens is moved by a focusing actuator based on a focus error signal. In label printing, the data processing unit controls, by feedforward, a position to which the objective lens is moved by the focusing actuator based on control data for label printing. The operation resolution of the focusing actuator in feedforward control is made higher than that in feedback control. Thus, an intended position control accuracy is achieved in feedforward control. For instance, in feedforward control, the gain of the driver circuit for the focusing actuator is switched to a smaller one in comparison to that in feedback control.
Abstract:
An automated lenticular photographic system includes an interface that permits a user to upload image files and image processing and printing equipment that is in communication with the interface for receiving the uploaded image files and processing the uploaded image files to create an interlaced print image file that is used to produce an interlaced print sheet containing interlaced print images. A pair of registration marks is formed on the interlaced print sheet outside of borders of the interlaced print images to assist in aligning the interlaced print sheet with a lenticular lens sheet. A registration system detects whether the lenticular lens sheet is off-centered and skewed relative to the interlaced print sheet.
Abstract:
A method to display information using an information layer laminate comprising at least three color layers each comprising a different color by selectively removing one or more portions of a first color layer to display portions of a second color layer, and selectively removing one or more portions of a first color layer and one or more portions of a second color layer to display portions of a third color layer.
Abstract:
Disclosed is an optical disc with a first area to store data for playback and that is reflective or opaque to visible light, and a second area that is transparent to visible light and includes first and second concentric rings. In one embodiment, a method of printing information on the optical disc includes: printing an inverse first text pattern in the first ring during a first printing on a first side, where the first text pattern is formed in reverse as viewed from the first side; printing a second text pattern in the second ring during a second printing on the first side, where the second text pattern is correctly visible from the first side; and printing, during the second printing, a first solid pattern to overlay at least a portion of the first text pattern, where the first text pattern is correctly visible as viewed from a second side.
Abstract:
The optical disc device has a circuit which forms a focus error signal for focus servo control based on reflection light from an optical disc exposed to laser light. Also, the device has a data processing unit which can control by feedback a position to which an objective lens is moved by a focusing actuator based on a focus error signal. In label printing, the data processing unit controls, by feedforward, a position to which the objective lens is moved by the focusing actuator based on control data for label printing. The operation resolution of the focusing actuator in feedforward control is made higher than that in feedback control. Thus, an intended position control accuracy is achieved in feedforward control. For instance, in feedforward control, the gain of the driver circuit for the focusing actuator is switched to a smaller one in comparison to that in feedback control.
Abstract:
The user of an electronic device can easily know when a replaceable unit needs replacing (the service life). A host computer 100 connected to a media processing device 1 (electronic device) executes a step (S4) of acquiring maintenance counter information that is stored in the media processing device 1, steps (S5, S7) of calculating based on the acquired maintenance counter information A=(the total open/close count of the media tray of the media drive 41 (51))/(an assured media tray open/close count), B=(the cumulative CD writing time of the media drive 41 (51)/(the assured CD writing time), and C=(the cumulative DVD writing time) of the media drive 41 (51)/(the assured DVD writing time), and steps (S6, S8) of displaying the maximum value of values A, B, and C as the expected service life of the media drive 41 (51) on a display unit.
Abstract:
A media processing device enables quick, easy, problem-free removal of processed media while maintaining high media quality. The media processing device, such as a disc publisher 1, has a tray 70 with a stacker unit 71 for storing media M, and a tray holding unit that supports the tray 70 movably between a removal position and a storage position. Overlapping channels and lands are formed on the top of the tray 70 and on the ceiling part of the tray holding unit facing the top of the tray 70.