Abstract:
An increase in the span of the transmission distance is aimed at by reducing unwanted ASE generated during optical communication. A carbon nanotube is employed as a saturable absorber 15 and this saturable absorber constitutes a noise reduction apparatus that has the function of cutting off or reducing transmission of unwanted ASE or the like which is of weak signal light intensity and of allowing transmission of signal light of strong light intensity. This noise reduction apparatus is arranged for example in the transmission path of signal light of a bidirectional excitation type EDFA, more precisely the apparatus is inserted in the latter stage of the EDF 40. In this way, carbon nanotubes having a saturable absorption function can be utilized in the field of optical communication.
Abstract:
In the present invention, a nonionic surfactant is noticed for a function of dispersing a carbon nanotube, and it is found that a mixture solution of an amide-based organic solvent and a polyvinylpyrrolidone (PVP) or of the amide-based organic solvent, the nonionic surfactant, and the polyvinylpyrrolidone (PVP) has an excellent function as a dispersant for the carbon nanotube. Ultrasonication is required for dispersing a carbon nanotube in the dispersant. The ultrasonication maybe carried out in the step of dispersing the carbon nanotube in the nonionic surfactant and/or the amide-based polar organic solvent, and then the polyvinylpyrrolidone (PVP) may be mixed with the resultant dispersion. Alternatively, a mixture solution of the nonionic surfactant and/or the amide-based polar organic solvent, and the polyvinylpyrrolidone (PVP) is prepared, and then the ultrasonication may be carried out in the step of dispersing the carbon nanotube therein.
Abstract:
Non-linear optical characteristics of a carbon nanotube are applied to an optical communication field. An optical transmission medium (12) obtained by incorporating a carbon nanotube having optically non-linear characteristics into a non-linear light transmitting medium is assembled between typical optical transmission medium (14a, 14b) and is used by being combined with an optical circulator (16), whereby the resultant product is used as an optical fuse (breaker) that transmits a normal signal light A but blocks the transmission of an abnormal-intensity light inadvertently produced.
Abstract:
An optical element according to the present invention has a thin film, in which single-wall carbon nanotubes are laminated, and utilizes a saturable absorption function of the single-wall carbon nanotubes. Further, in a method for producing the optical element according to the present invention, the thin film is formed by spraying, to a body to be coated, a dispersion liquid prepared by dispersing the single-wall carbon nanotubes in a dispersion medium. Accordingly, a nonlinear optical element, which can operate in an optical communication wavelength region and which is extremely inexpensive and efficient, and a method for producing the optical element can be provided.
Abstract:
In the present invention, a nonionic surfactant is noticed for a function of dispersing a carbon nanotube, and it is found that a mixture solution of an amide-based organic solvent and a polyvinylpyrrolidone (PVP) or of the amide-based organic solvent, the nonionic surfactant, and the polyvinylpyrrolidone (PVP) has an excellent function as a dispersant for the carbon nanotube. Ultrasonication is required for dispersing a carbon nanotube in the dispersant. The ultrasonication may be carried out in the step of dispersing the carbon nanotube in the nonionic surfactant and/or the amide-based polar organic solvent, and then the polyvinylpyrrolidone (PVP) may be mixed with the resultant dispersion. Alternatively, a mixture solution of the nonionic surfactant and/or the amide-based polar organic solvent, and the polyvinylpyrrolidone (PVP) is prepared, and then the ultrasonication may be carried out in the step of dispersing the carbon nanotube therein.
Abstract:
An electrode member (10A) for a reversibly color changeable display device, having: a transparent electrically-conductive structural layer (10C); and a reversibly color changeable film layer (3) disposed at one side of the transparent electrically-conductive structural layer (10C), the reversibly color changeable film layer (3) being formed by a dispersion liquid containing ultrafine particles, so that a color of the reversibly color changeable film layer (3) can be changed under control, by applying a voltage to the transparent electrically-conductive structural layer (10C) and an electrically-conductive counter electrode structural layer (10B), with an electrolyte layer (4) provided at one side of the reversibly color changeable film layer (3), and the electrically-conductive counter electrode structural layer (10B) provided at an outside of the electrolyte layer (4).
Abstract:
A carbon nanotube-dispersed polyimide saturable absorber excellent in an optical quality, obtainable by mixing a carbon nanotube dispersion liquid comprising a carbon nanotube, an amide-based polar organic solvent, and a nonionic surfactant and/or a polyvinylpyrrolidone (PVP) with a mixture solution of a solvent soluble polyimide and an organic solvent. A method for producing the same, comprising the steps of dispersing a single-walled carbon nanotube in a mixture solution of an amide-based polar organic solvent and a nonionic surfactant under intensive stirring, mixing the resultant dispersion liquid with a polyimide mixed organic solvent, and removing the solvent.
Abstract:
An optical element according to the present invention has a thin film, in which single-wall carbon nanotubes are laminated, and utilizes a saturable absorption function of the single-wall carbon nanotubes. Further, in a method for producing the optical element according to the present invention, the thin film is formed by spraying, to a body to be coated, a dispersion liquid prepared by dispersing the single-wall carbon nanotubes in a dispersion medium. Accordingly, a nonlinear optical element, which can operate in an optical communication wavelength region and which is extremely inexpensive and efficient, and a method for producing the optical element can be provided.