Abstract:
An improved magnetoresistive read sensor (100) and a method of fabricating magnetoresistive read sensor (100) that eliminates film removal is disclosed. The magnetoresistive sensor (100) is formed by positioning a first mask (128) on a gap layer (104) split into three regions due to subsequent layers. A first mask (128) is positioned on the central region of the gap layer (104) and a first hard-biasing material (106) is deposited onto the outside regions of the gap layer (104). The first mask (128) is removed and a magnetoresistive element (116) is deposited onto the outside regions of the first hard-biasing material (106) and the central region of gap layer (104), thereby forming an active region (122), a first passive region (124) and a second passive region (126) of the magnetoresistive sensor (100). A spacer layer (118) is deposited onto the magnetoresistive element (116) in all three regions and a soft adjacent layer (120) is deposited onto the spacer layer (118) in all three regions. A second mask (134) is positioned over the active region (122) of the sensor and a second hard-biasing material (110) is deposited onto the soft adjacent layer (120) in the first passive region (124) and the second passive region (126). The second mask (134) is removed and contacts (112, 114) are positioned onto the second hard- biasing material (110).
Abstract:
A magnetic tunnel junction sensor is provided having a laminated free layer comprising a first sublayer formed of Co—Fe in contact with a spacer layer and a second sublayer formed of Ni—Fe—Mo. The Ni—Fe—Mo material of the second sublayer has a magnetocrystalline anisotropy constant, k, that is much smaller than that of Ni—Fe. Due to the small value of k of the Ni—Fe—Mo material used to fabricate the second sublayer of the free layer, the thickness of the Co—Fe first sublayer may be increased to improve manufacturability while retaining a low net stiffness of the free layer for high sensitivity of the MTJ sensor in response to signal fields from data magnetically recorded on a disk. The thicker Co—Fe first sublayer results in a higher magnetoresistance coefficient of the improved MTJ sensor.
Abstract:
A high data-rate stitched pole magnetic read/write-head combining sputtered and plated high magnetic moment materials and a method for fabricating same. The plating and stitching aspects of this fabrication allow the formation of a very narrow write-head, while the sputtering permits the use of high magnetic moment materials having high resistivity and low coercivity.
Abstract:
A magnetic tunneling element in which the tunnel current flows reliably to exhibit a stable magnetic tunneling effect. The magnetic tunneling element includes a first magnetic layer, a tunnel barrier layer formed on the first magnetic layer, and a second magnetic layer formed on the tunnel barrier layer. The tunnel barrier layer is a metal film oxidized by inductively coupled oxygen plasma and a second magnetic layer is formed on the tunnel barrier layer.
Abstract:
A dual-stripe current-pinned spin valve magnetoresistive read sensor includes a first soft ferromagnetic (FM) layer separated from a second soft FM layer by a first spacer layer formed of conductive material. The first spacer layer is also configured to receive a first biasing current for generating a first magnetic field of sufficient strength to saturate the first soft FM layer. The read sensor further includes a third soft FM layer and a fourth soft FM layer separated by a second spacer layer formed of conductive material. The second spacer layer is configured to receive a second biasing current for generating a second magnetic field of sufficient strength to saturate the fourth soft FM layer. An insulation layer also is disposed between the second soft FM layer and the third FM layer. The first and second biasing currents thereby pin magnetizations of the first and fourth soft FM layers, while having a combined negligible effect on magnetizations of substantial portions of the second and third soft ferromagnetic layers.
Abstract:
A magnetoresistance effect device comprises a magnetic multi-layer film having at least an antiferromagnetic film, a first ferromagnetic film, a non-magnetic film, and a second ferromagnetic film formed in the order on the front surface portion of the substrate, the magnetic multi-layer film having giant magnetoresistance effect, at least the second ferromagnetic film having a shape corresponding to a magnetic field detecting portion. The bias magnetic field applying films are disposed on a conductive film of the magnetic multi-layer film at outer portions of both edge portions of the magnetic field detecting portion of the magnetoresistance effective film. Alternatively, the second ferromagnetic film has a first portion corresponding to the magnetic field detecting portion and a second portion corresponding to the outer portions of both the edge portions of the magnetic field detecting portion, the film thickness of the second portion being smaller than the film thickness of the first portion. The bias magnetic field applying films are formed at the outer portions of both the edge portions of the magnetic field detecting portion of the second ferromagnetic film. With the reversely structured magnetoresistance effect film and the laminate positions of the bias magnetic field applying films, in addition to suppressing the reproduction fringe and Barkhausen noise, the decrease of contact resistance, the suppression of insulation detect, and good linear response characteristic can be accomplished.
Abstract:
A magnetoresistive effect film has a lamination of an antiferromagnetic thin film, a magnetic thin film that is in contact with the antiferromagnetic thin film, a non-magnetic thin film that is in contact with the magnetic film, and another magnetic thin film that is in contact with the non-magnetic thin film. With a bias magnetic field of Hr on the antiferromagnetic thin film and a coercivity Hc2 of the other magnetic thin film, the condition Hc2
Abstract:
A first magnetic layer (3) is laminated on a magnetic yoke film (2) forming a closed magnetic circuit containing a magnetic gap so as to be magnetically coupled to the magnetic yoke film (2), and a magnetic separation layer (4), a second magnetic layer (5) and an antiferromagnetic layer (6) are laminated on the first magnetic layer (3). Further, a pair of electrodes (1, 7) are formed so that the laminate comprising the above layers is sandwiched between the electrodes. A permanent magnet film 8 is disposed to apply a bias magnetic field to the first magnetic layer (3). The magnetic separation layer (4) is formed of an insulator. Tunnel current is made to flow between the electrodes (1, 7) through the magnetic separation layer (4), and magnetic signals in the magnetic yoke film (2) are detected by using the antiferromagnetic tunnel magnetoresistance effect that the tunnel current is varied in accordance with variation of the difference in the magnetization direction between the first magnetic layer (3) and the second magnetic layer (5).
Abstract:
A magnetoresistance effect device comprises a magnetic multi-layer film having at least an antiferromagnetic film, a first ferromagnetic film, a non-magnetic film, and a second ferromagnetic film formed in the order on the front surface portion of the substrate, the magnetic multi-layer film having giant magnetoresistance effect, at least the second ferromagnetic film having a shape corresponding to a magnetic field detecting portion. The bias magnetic field applying films are disposed on a conductive film of the magnetic multi-layer film at outer portions of both edge portions of the magnetic field detecting portion of the magnetoresistance effective film. Alternatively, the second ferromagnetic film has a first portion corresponding to the magnetic field detecting portion and a second portion corresponding to the outer portions of both the edge portions of the magnetic field detecting portion, the film thickness-of the second portion being smaller than the film thickness of the first portion. The bias magnetic field applying films are formed at the outer portions of both the edge portions of the magnetic field detecting portion of the second ferromagnetic film. With the reversely structured magnetoresistance effect film and the laminate positions of the bias magnetic field applying films, in addition to suppressing the reproduction fringe and Barkhausen noise, the decrease of contact resistance, the suppression of insulation detect, and good linear response characteristic can be accomplished.
Abstract:
An ESD protective circuit is described which has a very low, variable turn-on threshold by using a shunting MOSFET which has an isolated substrate/body which is connected to an electrode that is provided in addition to the gate, source and drain electrodes. A variable gate voltage which is preferably a function of an ESD voltage is used to trigger the MOSFET into conduction. A voltage is applied to the substrate/body of the MOSFET to lower the turn-on voltage. The voltage on the substrate allows the turn-on voltage to be adjusted for different applications and/or to be adjusted dynamically to respond to events. The substrate voltage is also preferably derived from the ESD voltage. Preferably the MOSFET has an epitaxial region with an electrode and a subcollector with an electrode. The epitaxial region electrode can be connected to the gate to improve the turn-on performance. The subcollector electrode can be connected to the substrate/body electrode to contribute to lowering the turn-on voltage. A preferred embodiment uses an ESD protective device according to the invention to protect a magnetic transducer in a data storage system.