WIRELESS COMMUNICATION SYSTEM
    2.
    发明申请
    WIRELESS COMMUNICATION SYSTEM 审中-公开
    无线通信系统

    公开(公告)号:US20080299904A1

    公开(公告)日:2008-12-04

    申请号:US11757686

    申请日:2007-06-04

    CPC classification number: H01Q7/06 H01Q21/29

    Abstract: A wireless communication system comprises a first communication module including a transmitter configured to generate a modulated magnetic field and a second communication module including a receiver. The receiver of the second communication module includes a solid magnetic field sensor configured to sense the magnetic field. Information is transferred from the first communication module to the second communication module via the magnetic field.

    Abstract translation: 无线通信系统包括:第一通信模块,包括被配置为产生调制磁场的发射机和包括接收机的第二通信模块。 第二通信模块的接收器包括被配置为感测磁场的固体磁场传感器。 信息经由磁场从第一通信模块传送到第二通信模块。

    Overlaid MR structure with magnetostatic stabilized soft adjacent layer

    公开(公告)号:US06449135B1

    公开(公告)日:2002-09-10

    申请号:US09180560

    申请日:1998-11-06

    Abstract: The present invention is a magnetoresistive (MR) sensor (100) that combines the advantages of abutted junction structure and regular overlaid structure. The abutted junction design is used with the soft adjacent layer (SAL) (108) and the overlaid structure is used with the MR element (120). The method of making the MR sensor (100) comprises depositing SAL (108) on top of the gap layer (106) and depositing spacer material (110) on top of the SAL (108). A mask (130) is placed over the central region of the spacer material (110) and SAL (108). The spacer material (110) and SAL (108) are removed in the areas not covered by the mask (130). An underlayer material (112) is deposited in the areas where the SAL (108) and spacer material (110) were removed. A hard-biasing material (114) is deposited on top of the underlayer (112). The mask (130) is removed and the MR element (120) is deposited on top of the spacer material (110) in the active region of the sensor (132) and on top of the hard-biasing material (114) in the passive regions of the sensor (134, 136). A cap layer (122) is deposited on top of the MR element (120) in the active (132) and passive regions (134, 136) of the MR sensor (100). Contacts (124) are placed on top of the cap layer (122) in the passive regions of the sensor (134, 136). In another embodiment of the method, additional material is added to separate the hard-biasing material (114), thus improving the signal to noise ratio. A low resistivity material (116) is added after the first hard-biasing material (114) and a second hard-biasing material (118) is deposited on top of the low-resistivity material (116). The additional materials are deposited before the mask (130) is removed. Once the mask (130) is removed, the MR senor (100) is built in accordance with the first embodiment.

    Laminated hard magnet in MR sensor
    6.
    发明授权
    Laminated hard magnet in MR sensor 失效
    MR传感器中的层叠硬磁体

    公开(公告)号:US06351357B1

    公开(公告)日:2002-02-26

    申请号:US09665782

    申请日:2000-09-20

    CPC classification number: B82Y25/00 G01R33/093 G11B5/3903 G11B5/3932

    Abstract: A magneto-resistive sensor has a magneto-resistive element with an active area with an electrical resistance sensitive to changes in magnetic flux. Two hard magnets on opposing sides of the magneto-resistive element magnetically bias the magneto-resistive element. Each hard magnet includes a seed layer of a soft magnetic, electrically conductive material between two magnet layers of a hard magnetic, electrically conductive material laminated longitudinally together such that the seed layer and the magnet layers exhibit unified magnetic properties. The seed layer is preferably an amorphous material such as nitrided sendust. The laminated structure allows for a thicker magnet structure with low electrical resistance but without degradation of magnetic properties due to the increased thickness.

    Abstract translation: 磁阻传感器具有磁阻元件,其具有对磁通量变化敏感的电阻的有源区域。 磁阻元件的相对侧上的两个硬磁体磁偏置磁阻元件。 每个硬磁体包括在纵向一体层叠的硬磁导电材料的两个磁体层之间的软磁导电材料的种子层,使得晶种层和磁体层表现出统一的磁性。 种子层优选为无定形材料,例如氮化硅铝石。 层压结构允许具有低电阻的较厚的磁体结构,但由于增加的厚度而不降低磁性能。

    Magnetoresistive sensor having a hard-biasing material and a cubic-titanium-tungsten underlayer
    7.
    发明授权
    Magnetoresistive sensor having a hard-biasing material and a cubic-titanium-tungsten underlayer 失效
    具有硬偏置材料和立方钛钨基底层的磁阻传感器

    公开(公告)号:US06278595B1

    公开(公告)日:2001-08-21

    申请号:US09237361

    申请日:1999-01-26

    CPC classification number: G11B5/3932 G11B5/3903

    Abstract: The present invention is a magnetoresistive (MR) sensor that combines a hard-biasing material with an underlayer of cubic-titanium-tungsten to improve the stability of the MR sensor. The permanency of the hard-biasing material affects both the transverse and longitudinal biasing of the MR sensor, which in turn affects the stability of the MR sensor. The stability of the hard-biasing material is improved by combining it with an underlayer of cubic-titanium-tungsten. The underlayer enhances the hard-biasing material by improving the longitudinal magnetic anisotropy, the coercivity, and the in-plane squareness of the hard-biasing material. The combination of hard-biasing material and cubic-titanium-tungsten underlayer can be used in a variety of MR sensor embodiments, specifically an abutted junction or an overlaid structure. The method of making the abutted junction or overlaid structures is also improved by using cubic-titanium-tungsten as the underlayer of the hard-biasing material. The cubic-titanium-tungsten underlayer can be deposited at temperatures which are normal for the manufacturing of MR sensors, thus extra process steps are not needed. In addition, the process is more consistent and reliable.

    Abstract translation: 本发明是一种磁阻(MR)传感器,其将硬偏压材料与立方钛钨的底层组合以提高MR传感器的稳定性。 硬偏压材料的永久性影响MR传感器的横向和纵向偏置,这又影响MR传感器的稳定性。 通过将其与立方钛 - 钨的底层组合来改善硬偏压材料的稳定性。 底层通过改善硬偏压材料的纵向磁各向异性,矫顽力和面内矩形度来增强硬偏压材料。 硬偏压材料和立方钛钨钨底层的组合可用于各种MR传感器实施例中,特别是邻接结或覆盖结构。 通过使用立方钛钨作为硬质偏压材料的底层,也可以提高制造邻接结或重叠结构的方法。 立方钛 - 钨底层可以在用于制造MR传感器的正常温度下沉积,因此不需要额外的工艺步骤。 此外,该过程更加一致和可靠。

    Method of fabricating a magnetoresistive read sensor
    8.
    发明授权
    Method of fabricating a magnetoresistive read sensor 有权
    制造磁阻读取传感器的方法

    公开(公告)号:US06235342B1

    公开(公告)日:2001-05-22

    申请号:US09651238

    申请日:2000-08-30

    Abstract: An improved magnetoresistive read sensor (100) and a method of fabricating magnetoresistive read sensor (100) that eliminates film removal is disclosed. The magnetoresistive sensor (100) is formed by positioning a first mask (128) on a gap layer (104) split into three regions due to subsequent layers. A first mask (128) is positioned on the central region of the gap layer (104) and a first hard-biasing material (106) is deposited onto the outside regions of the gap layer (104). The first mask (128) is removed and a magnetoresistive element (116) is deposited onto the outside regions of the first hard-biasing material (106) and the central region of gap layer (104), thereby forming an active region (122), a first passive region (124) and a second passive region (126) of the magnetoresistive sensor (100). A spacer layer (118) is deposited onto the magnetoresistive element (116) in all three regions and a soft adjacent layer (120) is deposited onto the spacer layer (118) in all three regions. A second mask (134) is positioned over the active region (122) of the sensor and a second hard-biasing material (110) is deposited onto the soft adjacent layer (120) in the first passive region (124) and the second passive region (126). The second mask (134) is removed and contacts (112, 114) are positioned onto the second hard-biasing material (110).

    Abstract translation: 公开了改进的磁阻读取传感器(100)和制造消除膜去除的磁阻读取传感器(100)的方法。 通过将第一掩模(128)定位在由于后续层分裂成三个区域的间隙层(104)上而形成磁阻传感器(100)。 第一掩模(128)位于间隙层(104)的中心区域上,并且第一硬偏压材料(106)沉积在间隙层(104)的外部区域上。 去除第一掩模(128)并且将磁阻元件(116)沉积到第一硬偏压材料(106)的外部区域和间隙层(104)的中心区域上,由此形成有源区域(122) ,磁阻传感器(100)的第一无源区(124)和第二无源区(126)。 在所有三个区域中,隔离层(118)沉积到磁阻元件(116)上,并且在所有三个区域中将软相邻层(120)沉积到间隔层(118)上。 第二掩模(134)被定位在传感器的有源区域(122)上方,并且第二硬偏压材料(110)沉积在第一无源区域(124)中的软相邻层(120)上,并且第二被动 区域(126)。 移除第二掩模(134)并将触头(112,114)定位在第二硬偏置材料(110)上。

    Magnetoresistive read sensor
    9.
    发明授权
    Magnetoresistive read sensor 失效
    磁阻读取传感器

    公开(公告)号:US06229678B1

    公开(公告)日:2001-05-08

    申请号:US09011631

    申请日:1999-01-07

    Abstract: An improved magnetoresistive read sensor (100) and a method of fabricating magnetoresistive read sensor (100) that eliminates film removal is disclosed. The magnetoresistive sensor (100) is formed by positioning a first mask (128) on a gap layer (104) split into three regions due to subsequent layers. A first mask (128) is positioned on the central region of the gap layer (104) and a first hard-biasing material (106) is deposited onto the outside regions of the gap layer (104). The first mask (128) is removed and a magnetoresistive element (116) is deposited onto the outside regions of the first hard-biasing material (106) and the central region of gap layer (104), thereby forming an active region (122), a first passive region (124) and a second passive region (126) of the magnetoresistive sensor (100). A spacer layer (118) is deposited onto the magnetoresistive element (116) in all three regions and a soft adjacent layer (120) is deposited onto the spacer layer (118) in all three regions. A second mask (134) is positioned over the active region (122) of the sensor and a second hard-biasing material (110) is deposited onto the soft adjacent layer (120) in the first passive region (124) and the second passive region (126). The second mask (134) is removed and contacts (112, 114) are positioned onto the second hard- biasing material (110).

    Abstract translation: 公开了改进的磁阻读取传感器(100)和制造消除膜去除的磁阻读取传感器(100)的方法。 通过将第一掩模(128)定位在由于后续层分裂成三个区域的间隙层(104)上而形成磁阻传感器(100)。 第一掩模(128)位于间隙层(104)的中心区域上,并且第一硬偏压材料(106)沉积在间隙层(104)的外部区域上。 去除第一掩模(128)并且将磁阻元件(116)沉积到第一硬偏压材料(106)的外部区域和间隙层(104)的中心区域上,由此形成有源区域(122) ,磁阻传感器(100)的第一无源区(124)和第二无源区(126)。 在所有三个区域中,隔离层(118)沉积到磁阻元件(116)上,并且在所有三个区域中将软相邻层(120)沉积到间隔层(118)上。 第二掩模(134)被定位在传感器的有源区域(122)上方,并且第二硬偏压材料(110)沉积在第一无源区域(124)中的软相邻层(120)上,并且第二被动 区域(126)。 移除第二掩模(134)并将触头(112,114)定位在第二硬质偏置材料(110)上。

Patent Agency Ranking