Abstract:
According to one or more embodiments, a chemical feed distributor may include a chemical feed inlet and a body. The chemical feed inlet may pass a chemical feed stream into the chemical feed distributor. The body may comprise one or more walls that may define an elongated chemical feed stream flow path and a plurality of chemical feed outlets. The plurality of chemical feed outlets may be spaced on the walls. The plurality of chemical feed outlets may be operable to pass the chemical feed stream out of the chemical feed distributor. The elongated chemical feed stream flow path may comprise an upstream fluid flow path portion and a downstream fluid flow path portion. The walls may be positioned such that the average cross-sectional area of the upstream fluid flow path portion is greater than the average cross-sectional area of the downstream fluid flow path portion.
Abstract:
A carbonaceous feed pyrolysis apparatus is provided including two or more hot particle fluidised beds, one of which contains a combustion zone, and one or more positive displacement apparatus for the transfer of hot particles beds. Also provided is a bio-oil production process including two or more fluidised beds, a first combustion zone carried out in one or more combustion fluidised beds in which a particulate material is fluidised and heated, and a second pyrolysis zone carried out in one or more pyrolysis fluidised beds in which hot particles heated in the combustion zone are used for pyrolysis of bio-mass, the combustion zone being operated at or about atmospheric pressure at a temperature of from 400° C. to 1100° C., and the pyrolysis zone being operated at a pressure of from atmospheric to 100 Barg at a temperature of from 400° C. to 900° C.
Abstract:
Disclosed is a method for enhanced fuel combustion to maximize the capture of by-product carbon dioxide. According to various embodiments of the invention, a method for combusting fuel in a two-stage process is provided, which includes in-situ oxygen generation. In-situ oxygen generation allows for the operation of a second oxidation stage to further combust fuel, thus maximizing fuel conversion efficiency. The integrated oxygen generation also provides an increased secondary reactor temperature, thereby improving the overall thermal efficiency of the process. The means of in-situ oxygen is not restricted to one particular embodiment, and can occur using an oxygen generation reactor, an ion transport membrane, or both. A system configured to the second stage combustion method is also disclosed.
Abstract:
The invention relates to an oxygen carrier solid, its preparation and its use in a method of combustion of a hydrocarbon feedstock by active mass chemical-looping oxidation-reduction, i.e. chemical-looping combustion (CLC). The solid, which is hi the form of particles, comprises an oxidation-reduction active mass composed of metal oxide(s) dispersed in a ceramic matrix comprising at least at least one feldspar or feldspathoid with a melting point higher than 1500° C., such as celsian, and has, initially, a specific macroporous texture. The oxygen carrier solid is prepared from a precursor of the ceramic matrix, obtained from a macroporous zeolitic material with zeolite crystals of a specific size, and a precursor of the oxidation-reduction active mass.
Abstract:
The invention relates to a plant and to a method for chemical looping oxidation-reduction combustion of a gaseous hydrocarbon feed, for example natural gas essentially containing methane. According to the invention, catalytic pre-reforming of the feed is performed in a pre-reforming zone comprising a fixed reforming catalyst, while benefiting from a heat transfer between the reduction or oxidation zone of the chemical loop and the pre-reforming zone adjoining the reduction or oxidation zone. Pre-reforming zone (130) and oxidation zone (110) or pre-reforming zone (130) and reduction zone (120) are thus thermally integrated within the same reactor (100) while being separated by at least one thermally conductive separation wall (140).
Abstract:
A process for power generation using a chemical looping combustion concept is integrated with heavy liquid fuel coking in a cracking reactor, and is configured such that petcoke deposits on metal oxide particles from the cracking reactor are used as fuel in the chemical looping combustion reaction. The process is also configured such that metal oxide particles provide the heat necessary for the cracking reaction to be initiated in the cracking reactor.
Abstract:
The invention relates to a method for chemical-looping combustion of a hydrocarbon-containing feedstock, comprising: contacting oxygen-carrying material particles coming from a reduction zone R0 with an oxidizing gas stream in a reactive oxidation zone R1, separating the fly ashes, the fines and the oxygen-carrying material particles within a mixture coming from zone R1 in a dilute phase separation zone S2, the driving force required for dilute phase elutriation in S2 being provided by the oxidizing gas stream from reactive oxidation zone R1. Optionally, partitioning is carried out in a dedusting zone S4, then possibly in a dense phase elutriation separation zone S5. The invention also relates to a chemical-looping combustion plant allowing said method to be implemented.
Abstract:
The invention relates to an improved method for chemical-looping combustion of a solid hydrocarbon-containing feed using a particular configuration of the reduction zone with: a first reaction zone R1 operating under dense fluidized bed conditions; a second reaction zone R2; a fast separation zone S3 for separation of the unburnt solid feed particles, of fly ashes and of the oxygen-carrying material particles within a mixture coming from zone R2; fumes dedusting S4; a particle stream division zone D7, part of the particles being directly recycled to first reaction zone R1, the other part being sent to an elutriation separation zone S5 in order to collect the ashes through a line 18 and to recycle the dense particles through a line 20 to first reaction zone R1.The invention also relates to a chemical-looping combustion plant allowing said method to be implemented.
Abstract:
A method for operating a fluidized-bed reactor includes introducing an alkali-containing material into a fluidized-bed reactor and introducing hydrous clay into the fluidized-bed reactor, the hydrous clay having a moisture content of at least about 5% by weight. The method further includes heating at least a portion of the alkali-containing material and hydrous clay, such that at least a portion of the hydrous clay is at least partially calcined and the at least partially calcined clay adsorbs at least a portion of alkali present in the fluidized-bed reactor. The method further includes removing at least a portion of the at least partially calcined clay and adsorbed alkali from the fluidized-bed reactor.
Abstract:
A method, system and apparatus for a low bed pressure drop circulating fluidized bed (CFB) boiler associated with fast bed CFB combustion are disclosed. The CFB boiler may be operated according to the following set of conditions. In an upper area of a combustor of the boiler, a flow pattern of the two-phase gas-solid flow may be placed in a fast bed fluidization state. The combustor temperature may be within a range of 850° C.-930° C. The fluidizing air velocity may be within 4 m/s and 6.2 m/s. An average size of a bed material in the combustor may be smaller than 300 μm. The gas-solid flow above of the secondary air inlet in the combustor may be kept in the fast bed fluidization state while maintaining a solid concentration of between 1 kg/m3 to 5 kg/m3. An inventory of bed material per unit area and/or the pressure drop in the combustor may be less than 8 kPa.