摘要:
A system for providing supercritical steam including a first boiler that generates steam via combusting a first fuel, and a second boiler fluidly connected to the first boiler via a conduit which heats the generated steam to supercritical steam temperatures via combusting a second fuel. A first temperature of the conduit may be below a critical corrosion temperature and a second temperature of the conduit is greater than or equal to the critical corrosion temperature. A combined carbon emission rate of the first boiler and the second boiler may be less than a combined carbon emission rate of generating and heating the steam to supercritical steam temperatures using boilers that only combust the first fuel. The first boiler may be fluidly connected to a heat exchanger that heats the generated steam to a supercritical steam temperature via a flue gas produced by a gas turbine.
摘要:
Disclosed is a method for enhanced fuel combustion to maximize the capture of by-product carbon dioxide. According to various embodiments of the invention, a method for combusting fuel in a two-stage process is provided, which includes in-situ oxygen generation. In-situ oxygen generation allows for the operation of a second oxidation stage to further combust fuel, thus maximizing fuel conversion efficiency. The integrated oxygen generation also provides an increased secondary reactor temperature, thereby improving the overall thermal efficiency of the process. The means of in-situ oxygen is not restricted to one particular embodiment, and can occur using an oxygen generation reactor, an ion transport membrane, or both. A system configured to the second stage combustion method is also disclosed.
摘要:
Oxycombustion systems and oxycombustion methods include thermally integrated ammonia synthesis. The oxycombustion systems may include an air separation unit that separates air into an oxygen stream and a nitrogen stream. An ammonia synthesis unit synthesizes ammonia from a hydrogen feed and the nitrogen stream to form a crude ammonia stream. An ammonia separation unit condenses the crude ammonia stream and separates the ammonia from any unreacted nitrogen and hydrogen to form a purified ammonia stream. An oxycombustion reactor combusts a fuel from a fuel feed stream in the presence of the oxygen stream from the air separation unit to generate hot water or steam. At least one thermal integration may be present in the oxycombustion systems and may be chosen from a reactor thermal linkage of the ammonia synthesis unit with the oxycombustion reactor, a separator thermal linkage of the air separation unit with the ammonia separation unit, or both.
摘要:
The processes and systems herein described enable the use of CO2 to handle heavy oil fractions. A significant reduction in the requisite energy to maintain such a fuel in fluid form is attained. The energy reduction from herein described residue handling systems facilitate increased combustion plant efficiency and reduced CO2 emissions. The residue handling system is useful in refineries, power generation plants and other processes utilizing heavy oil residues as a feed.
摘要:
Oxycombustion systems and oxycombustion methods include thermally integrated ammonia synthesis. The oxycombustion systems may include an air separation unit that separates air into an oxygen stream and a nitrogen stream. An ammonia synthesis unit synthesizes ammonia from a hydrogen feed and the nitrogen stream to form a crude ammonia stream. An ammonia separation unit condenses the crude ammonia stream and separates the ammonia from any unreacted nitrogen and hydrogen to form a purified ammonia stream. An oxycombustion reactor combusts a fuel from a fuel feed stream in the presence of the oxygen stream from the air separation unit to generate hot water or steam. At least one thermal integration may be present in the oxycombustion systems and may be chosen from a reactor thermal linkage of the ammonia synthesis unit with the oxycombustion reactor, a separator thermal linkage of the air separation unit with the ammonia separation unit, or both.
摘要:
Disclosed is a method for enhanced fuel combustion to maximize the capture of by-product carbon dioxide. According to various embodiments of the invention, a method for combusting fuel in a two-stage process is provided, which includes in-situ oxygen generation. In-situ oxygen generation allows for the operation of a second oxidation stage to further combust fuel, thus maximizing fuel conversion efficiency. The integrated oxygen generation also provides an increased secondary reactor temperature, thereby improving the overall thermal efficiency of the process. The means of in-situ oxygen is not restricted to one particular embodiment, and can occur using an oxygen generation reactor, an ion transport membrane, or both. A system configured to the second stage combustion method is also disclosed.
摘要:
Oxycombustion systems and oxycombustion methods include thermally integrated ammonia synthesis. The oxycombustion systems may include an air separation unit that separates air into an oxygen stream and a nitrogen stream. An ammonia synthesis unit synthesizes ammonia from a hydrogen feed and the nitrogen stream to form a crude ammonia stream. An ammonia separation unit condenses the crude ammonia stream and separates the ammonia from any unreacted nitrogen and hydrogen to form a purified ammonia stream. An oxycombustion reactor combusts a fuel from a fuel feed stream in the presence of the oxygen stream from the air separation unit to generate hot water or steam. At least one thermal integration may be present in the oxycombustion systems and may be chosen from a reactor thermal linkage of the ammonia synthesis unit with the oxycombustion reactor, a separator thermal linkage of the air separation unit with the ammonia separation unit, or both.
摘要:
Oxycombustion systems and oxycombustion methods include thermally integrated ammonia synthesis. The oxycombustion systems may include an air separation unit that separates air into an oxygen stream and a nitrogen stream. An ammonia synthesis unit synthesizes ammonia from a hydrogen feed and the nitrogen stream to form a crude ammonia stream. An ammonia separation unit condenses the crude ammonia stream and separates the ammonia from any unreacted nitrogen and hydrogen to form a purified ammonia stream. An oxycombustion reactor combusts a fuel from a fuel feed stream in the presence of the oxygen stream from the air separation unit to generate hot water or steam. At least one thermal integration may be present in the oxycombustion systems and may be chosen from a reactor thermal linkage of the ammonia synthesis unit with the oxycombustion reactor, a separator thermal linkage of the air separation unit with the ammonia separation unit, or both.