Abstract:
A combination electric lighter and portable vaporization device that functions as a dual purpose apparatus permitting a user to carry a portable vaporization apparatus that additionally functions as an electric lighter. The apparatus includes an integrated electrical source and a versatile heating element. The apparatus allows the user to ignite a plurality of smoking products but provides the option of vaporize the smoking products through the use of a vaporization device. The vaporization device can heat vaporizable material against the versatile electrically powered heating element in a manner that prevents ignition. The versatile heating element can function as a lighter, without requiring extensive configuration to light a smoking product. The apparatus is rechargeable. The component arrangement of the apparatus allows it to function as a portable electrical ignition device that can be utilized as a general purpose ignition device.
Abstract:
A portable work apparatus has a combustion engine for driving a work tool. An air/fuel mixture is supplied to the engine via a carburetor which is provided with an electrical heating element for heating to a given temperature. The heating element is connected to a switch via which electrical energy, which is provided by a generator driven by the engine, is supplied. When a given temperature is exceeded, the switch interrupts the energy supply. To achieve an exact temperature control, the ohmic resistance value of the heating element is stored in a memory in dependence on the temperature. The current flowing through the heating element and the voltage drop at the heating element are measured and the instantaneous resistance of the heating element is calculated therefrom. This calculated value is compared to the value stored in the memory to open or close the switch in dependence on the comparison.
Abstract:
The aim of the invention is to improve a mobile flue gas generator and to simplify a method for testing a flue gas indicator. The invention is characterised in that a mobile flue gas generator for simulating a real flue gas is proposed, whereby the mobile flue gas generator comprises an electric heating device for generating the flue gas.
Abstract:
A two-stroke engine with external fuel mixture generation in a carburetor. The engine including a suction funnel having an interior disposed upstream of the carburetor. The engine further includes a tapered insert having a narrow end and a wide end disposed in an area of an inlet port of the suction funnel. The insert at least partially defines the interior of the suction funnel, and the insert tapers in a flow direction of air flow from the wide end to the narrow end. Accordingly, a diameter of the interior of the suction funnel adjacent to the narrow end of the insert is substantially larger when compared to the narrow end of the insert.
Abstract:
A vapor delivery system for delivering a vapor-phase reactant to a chemical process reactor at a substantially constant flow rate. The vapor delivery system includes a source of a reactant material, means for converting the reactant material to a vapor and for maintaining a predetermined volume of vapor in a vapor phase, a flow controller for providing a controlled flow of the vapor-phase reactant to the process reactor, means for detecting a parameter related to the availability of the vapor-phase reactant material to the process reactor from the flow controller, and means responsive to the detection signal for controlling the supply of reactant material to the vapor converter. In one embodiment the parameter is the pressure of the vapor within the predetermined volume. In another embodiment the parameter is the fluid conductance of a control valve within the flow controller. The vapor delivery system of the present invention can operate in either a substantially continuous or a noncontinuous delivery mode.
Abstract:
Heating devices are used to prevent icing and deposition of fuel on the throttle valve under adverse operating conditions; these device comprise electrical resistance hot wires applied to the surface of the throttle valve, yet these wires lead to undesired turbulence in the fuel-air mixture flow. As the length of time in operation increases, the efficiency of the hot wires is lessened by corrosion of their surface. These disadvantages are avoided by integrating the heating device with the component to be heated. To this end, the heating device is disposed in an axial bore of the throttle valve shaft. This arrangement is used especially with mixture-compressing internal combustion engines equipped with carburetors or central injection systems.
Abstract:
A downdraught carburettor of the constant pressure type has a mixing chamber 2 with an operator-controlled throttle valve 3 at its downstream end and a choke valve 10, which is operated by a diaphragm box 20 in dependence upon the pressure in the mixing chamber 2, at its upstream end. Fuel is supplied to the mixing chamber from an annular duct 5 through ports 6 to the wall of the mixing chamber down which the fuel flows in the form of a thin film. The film is evaporated to form the mixture by a heating jacket 16 which surrounds the mixing chamber 2 and is heated by engine cooling water or exhaust gases. In order to prevent the film of fuel from being broken up before it has been heated and evaporated, which tends to happen owing to turbulence in the air stream caused by the choke valve 10, an inner tube 11 is provided. The choke valve 10 is situated in the upstream end of the inner tube 11 so that the fuel film is screened by the tube 11 from any turbulence caused by the valve 10. Air flow to draw fuel from the ports 6 and build up the film on the wall of the mixing chamber takes place through narrow annular ducts 12 between the tube 11 and the surrounding mixing chamber wall, these narrow ducts being uniformly spaced apart around the whole of the outside of the tube 11.
Abstract:
A carburetor in which a fuel evaporator using a "porous ceramic body" is disclosed. The "porous ceramic body" has a three-dimensional porous structure with open boxes. The three-dimensional porous structure comprises an electrically conductive ceramic with a positive temperature coefficient. The carburetor is provided with an electrical arrangement so as to permit current to flow through the "porous ceramic body" to cause it to produce heat.