Abstract:
Disclosed is a high-pressure energy storage thermal energy power machine. A gasifier is arranged on an exhaust duct on a cylinder head of an internal combustion engine. The gasifier is provided with gasifying plates in the direction of parallel air flow. Gas holes are arranged on the gasifying plates. The bottom portion of the gasifier is provided with a working medium inlet. Gasifying plates are distributed with gaps. Gas holes are distributed in an array on the gasifying plates. An energy storage chamber is arranged on the cylinder head. The gasifier is connected to the energy storage chamber. The energy storage chamber is connected to a high-pressure valve. The high-pressure valve is arranged on the cylinder head and above the cylinder block. The ratio of the volume of the energy storage chamber to the volume of the cylinder of the internal combustion engine is 1:1-3.
Abstract:
An offset in-line four cylinder engine has reduced vibration generated by a secondary inertia couple based on lateral pressures from pistons. A reference line passes through a shaft center of a crankshaft and is parallel or substantially parallel to cylinder axes of four cylinders as viewed in the axial direction of the crankshaft. As viewed in the axial direction of the crankshaft, the direction in which the reference line extends is referred to as first direction, and the direction perpendicular to the first direction is referred to as second direction. A distance between the shaft center of a first balancer shaft and the reference line as measured in the second direction is different from the distance between the shaft center of a second balancer shaft and the reference line as measured in the second direction, or a magnitude of a first unbalancing portion is different from a magnitude of the second unbalancing portion.
Abstract:
A fluid flow machine includes a casing including a cylinder and a crankshaft support. A piston is slidably disposed in the cylinder for reciprocating along an axis of the cylinder. A crankshaft includes a main bearing journal rotationally supported in the crankshaft support, a crankpin radially offset from an axis of the main bearing journal and a crank web connecting the main bearing journal and the crankpin. A multi-linkage connecting rod mechanism is connected between the piston and crankpin and includes a connecting rod, a first hinge link and a crankpin link pivotally connected to each other. A force transfer mechanism connects the multi-linkage connecting rod mechanism to the casing for transferring a vertical piston force into a horizontal crankpin force.
Abstract:
A switching valve for an internal combustion engine having an adjustable compression ratio. The switching valve includes a switching element having a groove, and a sleeve-shaped connecting section, which has a first bore, which connects the switching valve with a first hydraulic fluid line, a second bore, which connects the switching valve with a second hydraulic fluid line, and a venting bore, which connects the switching valve to a venting duct. The switching element is guided so as to be movable in the connecting section by forming a gap between the surface of the switching element and a corresponding guide face of the connecting section. In a first switched position of the switching valve, the groove connects the first hydraulic fluid line to a venting duct. In a second switched position, the groove connects the second hydraulic fluid line to the venting duct.
Abstract:
A multi-joint crank drive of an internal combustion engine, comprising a plurality of coupling members rotatably supported on crank pins of a crankshaft and a plurality of articulation connecting rods rotatably supported on crank pins of an eccentric shaft, wherein each of the coupling members is pivotably connected to a piston connecting rod of a piston of the internal combustion engine and to one of the articulation connecting rods. In order to reduce second order inertia forces, the multi-joint crank drive is designed or adjusted in such a way that a crankshaft rotational angle range of an intake phase is greater than 180 degrees; a crankshaft rotational angle range of a compression phase is less than 180 degrees; a crankshaft rotational angle range of an expansion phase is greater than 180 degrees; and a crankshaft rotational angle range of an exhaust phase is less than 180 degrees.
Abstract:
An internal combustion engine may include a bushing defining an external circumferential diameter and an aperture defining an internal circumferential diameter. A center defined by the external circumferential diameter and a center defined by the internal circumferential diameter are offset with respect to one another. The internal circumferential diameter is operably coupled to a crankpin, and the external circumferential diameter is operably coupled to a connecting rod, thereby operably coupling the connecting rod to the crankpin. The engine may further include a bushing control assembly, wherein the bushing control assembly is configured to delay initiation of a power stroke of the engine until a crankshaft of the engine has rotated at least about 15 degrees beyond a first stroke termination angle of a compression stroke of the engine.
Abstract:
A mechanical breather system for a four-stroke engine includes a rotating member. The rotating member can have at least one inlet channel in fluid communication between an outer perimeter of the rotating member and an inner region of the rotating member. A breather housing having an air receiving chamber formed therein is fluidly coupled to the at least one inlet channel of the rotating member. A passage can be formed through a wall of the breather housing is in fluid communication with the air receiving chamber and an exterior of the breather housing.
Abstract:
A multi-link internal combustion engine generally includes a cylinder block, an oil pan mounted to the undersurface of the cylinder block to define a crank chamber, the oil pan being formed with a shallow bottom portion and a deep bottom portion for storing oil. The multi-link internal combustion engine further includes a multi-link, piston-crank mechanism disposed in the crank chamber, a pivotal link member of the piston-crank mechanism pivotal about a pivotal fulcrum located on the side of oil pan; and an oil guide wall provided on the shallow bottom portion in the crank chamber for guiding the oil displaced due to the movement of the pivotal link member to the side of deep bottom portion.
Abstract:
An improved piston crankshaft interface device provides a stabilized and balanced follower-guide member or “follower” which supports a fulcrum that is created by the point at which the connecting rod fastens to the sliding members within the follower. Sliding members fitted for follower allow the fulcrum to slide with ease up and down, within the follower wherein the movement of the follower is stabilized by attaching members, which fasten the follower to the piston, such that the follower and piston move in unison, as a unit, within the cylinder.
Abstract:
An Elevated Expansion-Ratio Internal Combustion Engine has a substantially standard repeating four-stroke sequence for each cylinder, and the Engine includes for each cylinder: an intake valve, a combustion-gas exhaust valve, and a vapor return valve. A return manifold for vapor connects from the return valves of respective ones of the cylinders back into a passage ahead of a beginning portion of an intake manifold. Substantially during a predetermined part of each compression stroke in the sequence of strokes, the return valve opens after a closing of the intake valve, and thereafter closes at a time within the compression stroke corresponding to a predetermined position of the piston in the cylinder.