Abstract:
A method and a device for exhaust gas recycling (EGR) in a combustion engine having two exhaust collectors. EGR gasses from the two exhausts collectors are combined in a mixing section of the EGR channel where they are accelerated, in a contraction portion, mixed and expanded. EGR gasses from a first exhaust collector are led into a first and EGR gasses from a second exhaust collector are led into a second portion of the contraction portion, which is arranged sideways with respect to the first portion of the contraction portion and separated therefrom up to the upstream area of the transition portion.
Abstract:
An airflow system for an engine includes first and second turbines coupled with first and second compressors, respectively. The first turbine receives exhaust from an exhaust manifold, and the first compressor supplies compressed air to an intake manifold. A wastegate valve, fluidly coupled with the exhaust manifold, is movable between a first position allowing exhaust to bypass at least one of the turbines and a second position restricting exhaust from bypassing. A controller restricts the supply of pressurized air to the wastegate valve such that the wastegate is in the second position when at least one of (i) a load of the engine is less than or equal to a predetermined load, (ii) a speed of the engine is less than or equal to a predetermined speed, and (iii) a temperature of air leaving the first compressor is less than or equal to a predetermined temperature.
Abstract:
In a two-stage concept for supercharging of internal combustion engines, in which the first stage is performed by an exhaust-gas turbocharger and the second stage by an electrically driven compressor, the compressor is also used to provide the secondary air used for the heating of a catalytic converter. In this manner, the catalytic converter quickly reaches an efficient operating temperature.
Abstract:
An exhaust gas turbocharger for an internal combustion engine includes an exhaust gas turbine in the exhaust gas system and a compressor in the intake system for producing compressed charge air. A compressor rotor is arranged in a compressor inlet channel. In order to achieve a greater range of utilization, an adjustable shutoff element is arranged in the compressor inlet channel, upstream from the compressor rotor, for variable adjustment of the effective cross-section.
Abstract:
An arrangement for feeding air in a supercharged piston engine includes at least a supercharging device arranged for feeding air to more than one cylinder, an air chamber in connection with the supercharging device, and a channel arrangement leading from the air chamber to each cylinder of the piston engine. A resonator system is in connection with the air chamber for attenuating the pressure pulsation in the air chamber. In a method of operating the supercharged piston engine, combustion air is fed by means of the supercharging device at a pressure higher than ambient pressure into the air chamber, air is led from the air chamber to the cylinders through the channel arrangements, and a pressure pulsation is formed in the air chamber, which pulsation is half-wavelength shifted from the pulsation in the air chamber, appearing at frequencies at or below the third harmonic of the rotational speed of the engine.
Abstract:
In an exhaust gas turbocharger for an internal combustion engine having an exhaust gas turbine arranged in an exhaust gas line, and a compressor arranged in an in-take duct and connected to the turbine by way of a shaft, the compressor includes a compressor wheel forming at the same time a rotor of an electric motor.
Abstract:
The engine head is provided with a compressor blade assembly in each intake port of each cylinder to compress the air introduced into the cylinder in order to supercharge the engine. A similar turbine blade assembly is provided in each exhaust port and is connected via a transmission to an adjacent compresssor blade assembly to drive the same.
Abstract:
The invention relates to a gas conducting device for internal combustion engines, notably motor vehicle engines, comprising a pressure line (5), a fresh-gas line (2) supplying fresh gas, a discharge line (4) and an orifice (1) which opens into the fresh gas line (2) and the discharge line (4). At least the pressure line (5) and the orifice (1) are connected via a control element (60-69) for the metered addition of gas. A compensating unit (61; 61A; 62; 62A; 63; 80; 81; 82; 84; 85; 86; 89) is provided for so as to compensate forces which act on the control element (60-69) as a result of a pressure difference (p5-p3; p3-p2) between the gas pressure on the compressed gas side (p5; p3) and the fresh gas side (p3; p2).
Abstract:
An internal combustion engine, particularly suitable for a vehicle, is provided with a plurality of combustion cylinders, at least a first exhaust manifold and a second exhaust manifold and at least one intake manifold. Each exhaust manifold is coupled with a plurality of the combustion cylinders. Each intake manifold is coupled with a plurality of the combustion cylinders. A first turbocharger includes a first turbine having at least one inlet and an outlet, and a first compressor having an inlet and an outlet. Then at least one first turbine inlet has a controllable, variable intake nozzle fluidly coupled with the first exhaust manifold. A second turbocharger includes a second turbine having an inlet and an outlet, and a second compressor having an inlet and an outlet. The second turbine inlet has a controllable, variable intake nozzle fluidly coupled with the second exhaust manifold. The first compressor outlet is fluidly coupled with the second compressor inlet. The engine has improved performance, is compact in design and is economical in operation.
Abstract:
An internal combustion engine, in particular a stationary gas engine, comprising a compressor arranged in the induction tract, in particular an exhaust gas turbocharger, an electrically operable blow-off valve connected downstream of the compressor, and a pressure sensor for detecting the pressure actual value of the mixture in the region of the blow-off valve. In according with the invention there is provided a device (9) for detecting the engine power output (N), a device (10) for calculating a pressure reference value in dependence on the detected engine power output and a relationship previously stored in a memory between engine power output (N) and pressure reference value (Psoll), and a regulating device (11) for regulating the blow-off valve (7) until the pressure actual value (Pist) reaches the calculated pressure reference value (Psoll).