Abstract:
This invention relates generally to flexible materials, especially those made of carbon fiber. The materials exhibit a first flexural modulus over a first range of flexural strain and a second flexural modulus over a second range of flexural strain. The materials provide advantages when used in an article of manufacture in which the performance may be improved by having a different flexural modulus depending on the amount of flexural strain, and thus dislocation, of the material.
Abstract:
Coating materials and coated personal protective clothing items incorporating the coating material are described. The coating material includes a polymeric component; a metal oxide component; and a catalytic component. The catalytic component includes a metal oxide or a mixed metal oxide which is an effective catalyst for an oxidation reaction. The coated personal protective clothing item includes a personal protective clothing substrate with a coating including the coating material.
Abstract:
Coating materials and coated personal protective clothing items incorporating the coating material are described. The coating material includes a polymeric component; a metal oxide component; and a catalytic component. The catalytic component includes a metal oxide or a mixed metal oxide which is an effective catalyst for an oxidation reaction. The coated personal protective clothing item includes a personal protective clothing substrate with a coating including the coating material.
Abstract:
This invention provides a silicone-coated fabric for airbags in which creases can be easily formed by applying heat and pressure, that can be stored compactly, and that exhibits minimal damage on the coated layer when deployed. More specifically, the invention provides a silicone-coated fabric comprising a silicone-based resin coated on one surface of a synthetic fiber woven fabric, and a thermoplastic resin adhering to the silicone-based resin-coated surface, wherein the adhesive strength between the silicone-based resin-coated surfaces is 0.01 to 10 N/cm.
Abstract:
The present invention provides a textile metallized on at least one of its faces comprising a textile layer of inorganic fibers and a metallic layer, the textile being characterized in that the connection between the textile layer and the metallic layer is provided by a polymeric intermediate layer formed by a matrix having at least one coupling polymer in which at least one flame retardant agent is distributed, said coupling polymer being bonded by chemical bonds firstly to the textile layer and secondly to the metallic layer. The present invention also provides the method of fabricating this metallized textile.
Abstract:
The invention relates to an illuminating web, characterized in that it is flame-retarded by a flame-retardant composition impregnated into the bulk of the illuminating web and/or included in a coating on at least one face of the illuminating web. The illuminating web exhibits an improved performance in terms of reaction toward fire. It is better suited to the standards in force as regards reaction to fire. It also exhibits an advantageous illuminating performance and has good acoustic properties, when it incorporates a support appropriate for sound insulation. The invention also relates to an illuminating structure composed of said web added to a rigid or semirigid support. This structure can be used in particular as partition wall or ceiling in a building. With regard to the web proper, it can be used as painter's canvas or stretched fabric or part of these.
Abstract:
The invention relates to a compound prepared by (i) reacting (a) at least one compound selected from diisocyanate, polyisocyanate, or mixture thereof; (b) at least one isocyanate-reactive compound selected from a fluorinated alcohol; a cyclic or acyclic sugar alcohol which is substituted with at least one —R1, —C(O)R1, −(CH2CH2O)n(CH(CH3)CH2O)mR2, —(CH2CH2O)n(CH(CH3)CH2O)mC(O)R1, or mixtures thereof; or mixtures of a fluorinated alcohol and a substituted cyclic or acyclic sugar alcohol; and (c) at least one isocyanate-reactive ethylenically unsaturated compound; wherein each n is independently 0 to 20; each m is independently 0 to 20; m+n is greater than 0; each R1 is independently a linear or branched alkyl group having 5 to 29 carbons optionally comprising at least 1 unsaturated bond; each R2 is independently —H, or a linear or branched alkyl group having 6 to 30 carbons optionally comprising at least 1 unsaturated bond, or mixtures thereof; and (ii) reacting the reaction product of step (i) with a bisulfate source.
Abstract:
There is described a transfer member or blanket for use in aqueous ink jet printer. The transfer member includes a non-woven polymer fiber matrix and a polymer dispersed throughout the non-woven polymer fiber matrix. The polymer fiber matrix has a first surface energy and the polymer has a second surface energy. The difference between the first surface energy and the second surface energy is from about 30 mJ/m2 to about 5 mJ/m2.
Abstract translation:描述了一种在水性喷墨打印机中使用的转印部件或橡皮布。 转移构件包括非织造聚合物纤维基质和分散在整个无纺聚合物纤维基质中的聚合物。 聚合物纤维基质具有第一表面能并且聚合物具有第二表面能。 第一表面能和第二表面能的差为约30mJ / m 2至约5mJ / m 2。
Abstract:
A moldable capsule device (1) includes a bundle of micron conductive fiber (3) and a resin-based material layer (5) overlying the bundle along the length (L) of the capsule wherein thickness of the resin-based material layer is not uniform (T1 and T2). A method (100) to form a moldable capsule (1) including extruding/pultruding a resin-based material layer (5) onto the length (L) of a bundle of micron conductive fiber (3). The resin-based material layer (5) has a first thickness (T1) and a second thickness (T2). The first thickness (T1) is disposed around multiple first surfaces (7) of the bundle. The second thickness (T2) is disposed around multiple second surfaces (9) of the bundle. The second thickness (T2) is at least twice that of the first thickness (T1). The extruded/pultruded resin-based material and bundle are section into moldable capsules.
Abstract:
An impregnation section of a die (150) and a method for impregnating at least one fiber roving with a polymer resin are disclosed. The impregnation section includes an impregnation zone (250) configured to impregnate the roving with the resin. The impregnation zone (250) includes a plurality of contact surfaces (252). The impregnation section further includes a roller (300) configured to impregnate the roving with the resin. The roller (300) is rotatable about a central axis. The method includes coating a fiber roving with a polymer resin. The method additionally includes traversing the coated roving through a impregnation zone (250) to impregnate the roving with the resin. The impregnation zone (250) includes a plurality of contact surfaces (252). The method further includes traversing the coated roving past a roller (300) to impregnate the roving with the resin.