Abstract:
Staple cartridge assemblies for use with surgical stapling instruments and methods for manufacturing the same are provided. Scaffolds for use with a surgical staple cartridge and methods for manufacturing the same are also provided.
Abstract:
Staple cartridge assemblies for use with surgical stapling instruments and methods for manufacturing the same are provided. Scaffolds for use with a surgical staple cartridge and methods for manufacturing the same are also provided.
Abstract:
Staple cartridge assemblies for use with surgical stapling instruments and methods for manufacturing the same are provided. Scaffolds for use with a surgical staple cartridge and methods for manufacturing the same are also provided.
Abstract:
A stitched pile surface structure and a process and apparatus for producing and finishing the same is disclosed. The stitched pile surface structure includes a backing having a thickness T. A plurality of parallel lines of stitches extends longitudinally along the backing. Each stitch has a predetermined stitch length dimension S. A plurality of rows of pile elements (either as loop pile or cut pile) is formed from one or more pile yarn(s) having an effective predetermined yarn diameter D. The total weight of the yarn used to form the pile loop elements is G grams.Substantially all of the stitches have a thread length DKL that satisfies the relationship: DKL
Abstract:
Process and apparatus for laying fiber bands of filaments by changeably moveable weft or diagonal layers to form fiber arrangements stretched in different laying directions between two transport chains having guide hooks and retainer needles. Fiber bands are spread individually, guided by guide elements for forming a direction change fold, such that strands of each direction change fold are fixed in gaps between guide hooks. Apexes of direction change folds spread out by the guide elements execute racking and are hanged and fixed in a row of densely arranged retainer needles. Upper strands of direction change folds forming between retainer needles and guide elements of weft or diagonal layers are spread horizontally and guided under tension by a stitch spreader moved from outside inwards. The instant abstract is neither intended to define the invention disclosed in this specification nor intended to limit the scope of the invention in any way.
Abstract:
The invention provides apparatus for producing multi-axial non-woven fabric comprising an endless series of yarn guides (3) having upper and lower reaches which extend widthwise of the apparatus and which are driven in opposite directions, rotatable creel means (2) for supplying yarns (1) to the yarn guides (3), the creel means (2) being driven in the same direction and at substantially the same speed as the endless series of yarn guides (3), and stitching means (5) for stitching the yarns (1) laid by the endless series of yarn guides (3).
Abstract:
The invention concerns an interfacing for stiffening outer garments which is formed from a composite of a nonwoven textile (19), a warp knit fabric with synthetic multifilament threads and weft threads (20). The composite according to the invention contains a loosely bonded nonwoven fabric (19 ) of fibre count 1 to 5 dtex and weight class 30 to 150 g/m.sup.2, a warp knit fabric of warp thread count 20 to 80 dtex, set of the warp 40 to 70 threads per 10 cm and fibre count 1 to 3.5 dtex and resilient weft threads (20) incorporated into each stitch course of the warp knit fabric of thread count 300 to 2000 dtex, set of the weft 70 to 130 threads/10 cm and, for a fibre proportion in excess of 50% by weight, a fibre count of 7 to 60 dtex. Said interfacing may be used as a backing panel interfacing or as an additional stiffening panel interfacing of garments in the region of the shoulder, armhole and shoulder area or even as a component of shoulder pads or for stiffening sleeves of outer garments in the rounded area at the top of the arm. (FIG. 2 ).
Abstract:
Aesthetic warp-knit, weft-inserted fabrics are produced having multiple substrate layers, warp yarns extending in the warp-wise direction of the fabric, and weft yarns extending in the weft-wise direction of the fabric. The warp and/or weft yarns are interposed between the multiple substrate layers. Warp stitching yarns forming stitch wales spaced-apart along the warp-wise direction of the fabric and stitched through the substrate layers hold the warp and weft yarns in position relative to one another and relative to the substrates. The substrates may also be provided in juxtaposed relationship to one another so as to increase the opacity, esthetics, and dimensional stability of the resulting fabric. Thermoplastic fibers may be incorporated in the fabric such that upon plasticization and subsequent cooling, they assist in binding of the resulting fabric.
Abstract:
A decorative fabric has two faces and is made on two stitch through type machines of different gauge. The fabric has a non-woven, flexible substrate and a first plurality of spaced yarns laid on the front face of the substrate in the filling direction. First knitting threads of predetermined gauge form a series of warpwise loop chains which bind the first filling yarns and the substrate into an integral structure. The rear face of the substrate has a second plurality fo spaced yarns laid thereon in the filling direction, and second knitting threads of predetermined gauge which are different from the predetermined gauge of said first knitting threads, thereby forming a series of warpwise loop chains which bind the second plurality of spaced yarns and said substrate into an integral structure.
Abstract:
A method and an apparatus for laying groups of transverse weft threads for a warp knitting machine, the threads being laid on two longitudinal conveyors running to the needle bed by means of a carriage which is reciprocated between and transversely to the direction of travel of the longitudinal conveyors. The weft threads laid after the forward movement lie parallel to the weft threads laid after the backward movement and with the same spacing from the adjacent weft thread in each case. First groups of weft threads are laid as a first layer and then groups of weft threads are laid as a second layer on the first layer in a direction of their weft threads which forms, with the direction of the weft threads of the first layer, an angle, particularly of at least 20.degree., which opens transversely to the direction of travel of the longitudinal conveyors.