Abstract:
Method and apparatus for producing a non-planar synthetic diamond structure of predetermined shape. A non-planar mandrel surface of the predetermined shape is provided and the mandrel surface is coated with a release substance. Synthetic diamond is deposited on the coating of release substance. The release substance is then activated to effect release of the deposited synthetic diamond structure. In a disclosed embodiment of the method of the invention a dome-shaped hollow mandrel is coated with a metal-containing substance, and synthetic diamond is deposited over the coating using a plasma jet deposition process. The metal containing substance is then heated to release the resultant diamond structure from the mandrel. In a form of the disclosed method, the metal-containing substance is a metal alloy which is highly polished before deposition of synthetic diamond thereon. The step of depositing synthetic diamond may include varying the deposition conditions during the depositing of diamond to obtain layers of diamond having different properties. In an embodiment of the apparatus of the invention, means are provided for rotating the mandrel in a deposition chamber, and means are also provided for moving the deposition system in the chamber, such as in an arc over the rotatable mandrel.
Abstract:
A products having at least a portion thereof with a nanocrystalline microstructure, and methods of producing such products. The method generally entails machining a body to produce a polycrystalline chip having a nanocrystalline microstructure. The chips produced by the machining operation may be in the form of particulates, ribbons, wires, filaments and/or platelets. The chips may be consolidated (with or without comminution) to form a product, such that the product is essentially a nanocrystalline monolithic material consisting essentially or entirely of nano-crystals, or of grains grown from nano-crystals. Alternatively, the chips may be dispersed in a matrix material, such that the product is a composite material in which the chips are dispersed as a reinforcement material. According to a particular aspect, a monolithic article can be formed entirely from a single chip by deforming the chip and/or removing material from the chip.
Abstract:
In a synthetic method for porous silica crystals through a hydrothermal reaction, a method for synthesizing porous silica crystals with a size of 0.5 mm or larger in high reproducibility and efficiency is provided using a method for manufacturing the porous silica crystals, wherein a high concentration area with silicon is formed as a partial area inside a hydrothermal synthesis vessel, and at least a part of a surface-smoothed bulk material is present in the high concentration area with silicon to perform the hydrothermal reaction, the bulk material comprising a compound containing both silicon and oxygen as a supply source for a part or a whole of the structure composition elements of the porous silica crystals.
Abstract:
Inorganic materials are deposited onto organic polymers using ALD methods. Ultrathin, conformal coatings of the inorganic materials can be made in this manner. The coated organic polymers can be used as barrier materials, as nanocomposites, as catalyst supports, in semiconductor applications, in coating applications as well as in other applications.
Abstract:
The present invention provides a microneedle, comprising a shaft of a monocrystalline material having at least three was which are formed by a crystal plane of the monocrystalline material; and a tip connected to an end of the shaft comprising at least three walls which are formed by a crystal plane of the material. The material is preferably silicon. Two of the walls of the tip are formed by the same crystal planes as two walls of the shaft. These two walls are formed by a crystal plane. Preferably, three walls of the tip are formed by a crystal plane.
Abstract:
A thin ferromagnetic film is deposited directly onto the surface of a waveguide. The crystalline orientation of the ferromagnetic film is restricted to a predetermined orientation by pulverizing nuclei that do not have the predetermined orientation.
Abstract:
Apparatuses and methods for making a multi-crystalline silicon ingot by directional solidification comprising two or more moveable heat shields located beneath the crucible, the heat shields being opened in a controlled manner to remove heat and produce a high quality silicon ingot.
Abstract:
It is to provide a method for growing an epitaxial crystal in which the doping conditions are set when an epitaxial crystal having a desired carrier concentration is grown. A method for growing an epitaxial crystal while a dopant is added to a compound semiconductor substrate, comprises: obtaining a relation between an off angle and a doping efficiency with regards to the same type of compound semiconductor substrate in advance; and setting a doping condition for carrying out an epitaxial growth on the compound semiconductor substrate based on the obtained relation and a value of the off angle of the substrate.
Abstract:
Disclosed in this invention is a method of preparing a whisker-preform comprising the steps of (a) uniformly dispersing a mixture of silicon microparticles and carbon fibers in the ratio of 4:1 to 8:1 into aluminium alkoxide solution; (b) filtering the dispersion obtained in step (a), dehydrating the filtered material, forming and drying the dehydrated material; and (c) heating the material dried in step (b) at a temperature in the range of 300.degree. to 400.degree. C.
Abstract:
A component includes a film containing polycrystalline yttrium oxide. In an X-ray diffraction pattern of the film, a ratio Im/Ic of a maximum intensity Im of a peak attributed to monoclinic yttrium oxide to a maximum intensity Ic of a peak attributed to cubic yttrium oxide satisfies an expression: 0≤Im/Ic≤0.002.