Abstract:
The present invention provides a method for producing highly purified polyhydroxyalkanoate (PHA) with high yield, by removing cell components other than PHA from cells containing PHA. Moreover, the present invention provides a method for simply removing or reducing chlorine remained in the collected PHA particles, when a treatment with an oxidizing agent containing hypochlorite is performed in the production of PHA as described above. One of the above-described methods comprises a step of treating cells containing polyhydroxyalkanoate with an oxidizing agent containing at least hypochlorite, a step of separating the treated cells into a water-soluble fraction and a water-insoluble fraction, and a step of reducing chlorine remained in the water-insoluble fraction. The step of reducing chlorine may be a step of washing the water-insoluble fraction with a hot water, thiosulfate solution or polar solvent solution containing at least an organic polar solvent in which polyhydroxyalkanoate is insoluble.
Abstract:
The present invention relates to a process for the production of polyhydroxyoctanoate, said method involving construction of a multifunctional Escherichia coli—Streptomyces conjugative shuttle vector, development of a recombinant vector designated as pCAB218, which is used to transform Streptomyces lividans TK64, such that it is capable of producing polyhydroxyoctanoate (PHO) in substantial amounts when grown in a conventional mineral medium.
Abstract:
Transgenic microbial strains are provided which contain the genes required for PHA formation integrated on the chromosome. The strains are advantageous in PHA production processes, because (1) no plasmids need to be maintained, generally obviating the required use of antibiotics or other stabilizing pressures, and (2) no plasmid loss occurs, thereby stabilizing the number of gene copies per cell throughout the fermentation process, resulting in homogeneous PHA product formation throughout the production process. Genes are integrated using standard techniques, preferably transposon mutagenesis. In a preferred embodiment wherein mutiple genes are incorporated, these are incorporated as an operon. Sequences are used to stabilize mRNA, to induce expression as a function of culture conditions (such as phosphate concentration), temperature, and stress, and to aid in selection, through the incorporation of selection markers such as markers conferring antibiotic resistance.
Abstract:
A novel process for recovering a compound from a fermentation broth that includes the stages of forming an enriched solution of the compound by extraction, obtaining a salt of the compound from the enriched solution, purifying a salt of the compound and trans-salifying the salt of the compound to a metal salt of the compound is disclosed.
Abstract:
A method for the enzymatic synthesis of sucrose ester, comprises introducing, in an adapted reactor and so as to form a reaction medium, predetermined amounts of an organic solvent, a sugar or a sugar derivative, a compound donor of acyl groups and an enzymatic catalyst, the amount of at least one constituent of the reaction mixture being deficient, in controlled addition during the reaction of additional amounts of the deficient constituent(s), and finally purifying the resulting sucrose esters at least by separating the fine enzymatic particles from the solvent.
Abstract:
Disclosed is a process for producing a compound represented by general formula (II-a): (wherein R1 represents a hydrogen atom, a substituted or unsubstituted alkyl group, or an alkali metal; and R2 represents a substituted or unsubstituted alkyl or aryl group) [hereinafter referred to as Compound (II-a)] or the lactone form of Compound (II-a) [hereinafter referred to as Compound (II-b)] which comprises subjecting a compound represented by general formula (I-a): (wherein R1 represents a hydrogen atom, a substituted or unsubstituted alkyl group, or an alkali metal; and R2 represents a substituted or unsubstituted alkyl or aryl group) [hereinafter referred to as Compound (I-a)] or the lactone form of Compound (I-a) [hereinafter referred to as Compound (I-b)] to the action of an enzyme source derived from a microorganism belonging to the genus Bacillus and capable of converting Compound (I-a) or Compound (I-b) into Compound (II-a) or Compound (II-b) in a reaction mixture to form Compound (II-a) or Compound (II-b) in the reaction mixture, and recovering Compound (II-a) or Compound (II-b) from the reaction mixture.
Abstract:
Protease enzyme from Bacillus subtilis and Bacillus sp. Catalyzes the acylation of organic solvent-insoluble macromolecules in isooctane solution containing vinyl esters of fatty acids, lactones or lactides as acyl donors. The reaction occurs only when the enzyme is solubilized via ion-pairing with the anionic surfactant dioctylsulfosuccinate, sodium salt (AOT). Enzyme based acylation was demonstrated in macromolecules such as silk proteins. These macromolecules are reactive either as cryogenically milled powder suspended in the organic solvent or as a thin film deposited onto ZnSe slides. This selective acylation approach represents the first attempt at using enzymes to modify organic-insoluble macromolecules in nonaqueous media.
Abstract:
Immobilized lipase is prepared by adsorbing lipase from a crude lipase solution onto polyolefin particles such as polypropylene particles which are nonpolar. The crude solution may be a cell-free culture broth. Lipase sources include Pseudomonas burkholderia and Pseudomonas aeruginosa. Uses of the immobilized lipase include enantioselective conversion of substrates such as enantioselective acylating or hydrolyzing.
Abstract:
Organisms are provided which express enzymes such as glycerol dehydratase, diol dehydratase, acyl-CoA transferase, acyl-CoA synthetase &bgr;-ketothiolase, acetoacetyl-CoA reductase, PHA synthase, glycerol-3-phosphate dehydrogenase and glycerol-3-phosphatase, which are useful for the production of PHAs. In some cases one or more of these genes are native to the host organism and the remainder are provided from transgenes. These organisms produce poly (3-hydroxyalkanoate) homopolymers or co-polymers incorporating 3-hydroxypropionate or 3-hydroxyvalerate monomers wherein the 3-hydroxypropionate and 3-hydroxyvalreate units are derived from the enzyme catalysed conversion of diols. Suitable diols that can be used include 1,2-propanediol, 1,3 propanediol and glycerol. Biochemical pathways for obtaining the glycerol from normal cellular metabolites are also described. The PHA polymers are readily recovered and industrially useful as polymers or as starting materials for a range of chemical intermediates including 1,3-propanediol, 3-hydroxypropionaldehyde, acrylics, malonic acid, esters and amines.
Abstract:
Enzyme-containing polymers are prepared by an anhydrous process of direct reaction of an enzyme in organic solution with crosslinking organic compounds having terminal reactive groups. In a first step, the enzyme is reacted in an organic solvent with a bifunctional monomer such as p-phenylene diisocyanate, 4-methyl-m-phenylene diisocyanate or 4,4′-methylenebisphenyl diisocyanate, and in a second step a bifunctional amine such as N-phenylethylenediamine, 1,6-diaminohexane, N,N′-diethyl-ethylenediamine or 1,4-diaminobutane is added. The enzyme-containing polymers are used as catalysts in chemical reactions such as acylation or enantioselective acylation of alcohols.