Abstract:
This invention relates to aminoplast crosslinker resins compositions based on at least partially alkylated reaction products A of melamine, formaldehyde and an alkanol with the following parameters: the ratio of the amount of substance n(CH2O) of combined formaldehyde to the amount of substance n(Mel) of melamine is in the range of from 5.6 mol/mol to 6.2 mol/mol, the ratio of the amount of substance n(RO) of alkyl ether groups in the crosslinker resin to the amount of substance n(Mel) of melamine is in the range of from 5.0 mol/mol to 5.6 mol/mol, the mass fraction of monomer in the resin, calculated as the ratio of the mass of monomer m(1) to the mass m(A) of the reaction products A is between 35% and 55%, to a process for their preparation, and to a method of use thereof as crosslinker in combination with hydroxy-functional polymers for coating of heat-sensitive substrates.
Abstract:
A cured product exhibits good heat resistance and flame retardancy as well as low dielectric constant and low loss tangent. A phosphorus-containing compound (i) obtained by a reaction between an aromatic aldehyde (a1) having an alkoxy group as a substituent on a nucleus and an organic phosphorus compound (a2) having a P—H group or a P—OH group in a molecular structure is reacted with a phenolic substance (a3) to obtain a phosphorus-containing phenolic substance (A1). Then the phosphorus-containing phenolic substance (A1) is reacted with an aromatic dicarboxylic acid or an anhydride or dihalide of an aromatic dicarboxylic acid or a C2-6 saturated dicarboxylic acid or an anhydride or dihalide of a C2-6 saturated dicarboxylic acid (A2) so that all or some of hydroxyl groups of the phenolic substance (A1) form ester bonds.
Abstract:
Compounds of Formula (I): R1—O—(CF2—O)n—R1, wherein: n is an integer from 2 to 100; and R1 is perfluorinated alkyl or substituted perfluorinated alkyl are described. Also described are methods of preparing the compounds of Formula (I). For example, compounds of Formula (I) can be prepared by providing a poly(oxymethylene) compound and fluorinating the poly(oxymethylene) compound, for instance, via direct aerosol fluorination.
Abstract:
The invention relates to condensation products of aldehydes and ketones, which contain acid groups and are especially suitable as dispersants for binding agent mixtures of high salt content.
Abstract:
Environmentally stable polymer complexes of processible poly (3,6-N-alkylcarbazolyl alkenes) are disclosed with can be doped to a high electrical conductivity with charge transfer acceptors such as iodine together with a method of making the complexes.
Abstract:
Alkenylphenylglycidyl ether capped styryl pyridines and styryl pyrazines are prepared by etherifying with an alkenylphenylglycidyl ether the reaction product of (A) a substituted pyridine and/or pyrazine with (B) a substituted aromatic aldehyde with the proviso that at least one of the components (A) or (B) contains a hydroxyl group which is susceptible to etherification by an alkenylphenylglycidyl ether. These alkenylphenylglycidyl ether capped styryl pyridines and pyrazines can be homopolymerized or copolymerized with other materials to produce polymers having excellent high temperature resistance, good mechanical strength and excellent processability and are used to make cured composites with heat resistant fibers that have applications in high temperature environments such as engine compartments and/or fire walls.
Abstract:
A method for the preparation of soluble, fusible, aminomethyl diaryl compound resins in the absence of halomethylation or halomethylated materials, which method comprises (a) refluxing a mixture of diaryl compound, an aldehyde, a saturated monocarboxylic acid, and a small amount of a strong acid catalyst to form an aldehyde-diaryl resin, (b) stripping off excess monocarboxylic acid under vacuum, and then (c) adding at least about 1 mole of a primary or secondary amine containing at least one additional nontertiary amino group per reactive group on the aldehyde-diaryl resin.
Abstract:
A polymer derived by heating in the presence of an acid catalyst at between about 65.degree. C. and 260.degree. C.I. a reaction product, a cogeneric mixture of alkoxy functional compounds, having average equivalent weights in the range from about 220 to about 1200, obtained by heating in the presence of a strong acid at about 50.degree. C. to about 250.degree. C.(a) a diaryl compound selected from naphthalene, diphenyl oxide, diphenyl sulfide, their alkylated or halogenated derivatives or mixtures thereof,(B) formaldehyde or formaldehyde-yielding derivative,(C) water, and(D) a hydroxy aliphatic hydrocarbon compound having at least one free hydroxyl group and from 1 to 4 carbon atoms, which mixture contains up to 50 percent by weight unreacted (A); withIi. at least one monomeric phenolic reactant selected from the group ##STR1## WHEREIN R is selected from the group consisting of ##STR2## HYDROGEN, ALKYL RADICAL OF 1-20 CARBON ATOMS, ARYL RADICAL OF 6-20 CARBON ATOMS, WHEREIN R.sub.1 represents hydrogen, alkyl or aryl, m represents an integer from 1 to 3; o represents an integer from 1 to 5; p represents an integer from 0 to 3; X represents oxygen, sulfur or alkylidene; and q represents an integer from 0 to 1; and,Iii. optionally an aldehyde or an aldehyde-yielding derivative or a ketone,For from several minutes to several hours.These polymeric materials are liquids or low melting solids which are capable of further modification to thermoset resins. These polymers are capable of being thermoset by heating at a temperature of from about 130.degree. C. to about 260.degree. C. for from several minutes to several hours in the presence of a formaldehyde-yielding compound. These polymers are also capable of further modification by reacting under basic conditions with formaldehyde with or without a phenolic compound. The polymers, both base catalyzed resoles and acid catalyzed novolacs are useful as laminating, molding, film-forming and adhesive materials. The polymers, both resoles and novolacs, can be epoxidized as well as reacted with a drying oil to produce a varnish resin.
Abstract:
Liquid oxyalkylated polyol prepolymers are prepared by oxyalkylating a prepolymer prepared from a hydroxy aromatic compound, an aldehyde and furfuryl alcohol with an alkylene oxide containing about 2-4 carbon atoms. The oxyalkylated polyol prepolymers have a viscosity of 1000-500,000 centipoises at 25.degree. C. and contain about 1.1-6 moles of interpolymerized aldehyde, about 3.1-15 moles of interpolymerized furfuryl alcohol, and about 1-10 moles of interpolymerized alkylene oxide for each mole of interpolymerized hydroxy aromatic compound. The resultant prepolymers are highly reactive and may be further polymerized with or without monomers such as polyisocyanate to produce flame retardant solid or cellular interpolymers. Flame retardant solid or cellular polyurethanes are prepared in one variant by interpolymerizing organic polyisocyanates with the oxyalkylated polyol prepolymers. In another variant, flame retardant closed cell cellular interpolymers are provided. Processes are provided for preparing the aforementioned novel oxyalkylated polyol prepolymers and solid or cellular interpolymers.
Abstract:
A formaldehyde copolymer resin having dependent unsaturated groups with the repeating unit:
WHEREIN R is an aliphatic acyl group derived from saturated acids having 2-6 carbons, olefinically unsaturated acids having 3-20 carbons, or an omega-carboxy-aliphatic acyl group derived from olefinically unsaturated dicarboxylic acids having 4-12 carbons or mixtures thereof, R1 is independently hydrogen, an alkyl group of 1-10 carbon atoms, or halogen, Z is selected from oxygen, sulfur, the group represented by Z taken with the dotted line represents dibenzofuran and dibenzothiophene moieties, or mixtures thereof, n is a whole number sufficient to give a weight average molecular weight greater than about 500, m is 0-2, p and q have an average value of 0 to 1 with the proviso that the total number of p and q groups are sufficient to give greater than one unsaturated group per resin molecule. These resins are useful to prepare coatings on various substrates or for potting electrical components by mixing with reactive diluents and curing agents and curing.