摘要:
An object of the invention is to provide titanium dioxide coloring particles capable of developing colors other than red and yellow while maintaining non-toxicity of titanium dioxide and a titanium dioxide particle mixture containing the titanium dioxide coloring particles, and to provide a method capable of producing the titanium dioxide coloring particles exhibiting the excellent properties by a simple process with a small environmental load. The invention relates to titanium dioxide coloring particles having a brookite type or rutile type crystal structure and co-doped with at least nitrogen and boron, a titanium dioxide particle mixture containing the titanium dioxide coloring particles, and a method for producing the titanium dioxide coloring particles in which a hydrothermal reaction of titanium diboride is caused in presence of an acid or urea, and then a nitriding treatment is performed in an ammonia gas atmosphere or by mixing with urea or carbon nitride.
摘要:
Methods and apparatuses for making nanomaterials are disclosed. The methods involve passing one or more source materials through a high pressure and high temperature chamber with an open throat, and then allowing the reactants to expand into a lower pressure, lower temperature zone. The source material is non-stoichiometric and fuel-rich so that excess un-combusted primary source material can form the nanomaterials. In some cases, the apparatus may be in the form of a modified rocket engine. The methods may be used to make various materials including: carbon nanotubes, boron nitride nanomaterials, titanium dioxide, and any materials that are currently produced by flame synthesis, including but not limited to electrocatalysts. The methods may also be used to make nanomaterials outside the Earth's atmosphere. The methods can include making, coating, or repairing structures in space, such as antennae.
摘要:
The present disclosure is generally directed to a single-step synthesis of nanostructured thin films by a chemical vapor and aerosol deposition (CVAD) process. The present disclosure is also directed to methods for controlling the morphology of the nanostructured thin films. The films can be used, for example, in lithium ion and/or sodium ion battery electrodes, solar cells and gas sensors.
摘要:
Methods are provided herein for forming transition metal oxide thin films, preferably Group IVB metal oxide thin films, by atomic layer deposition. The metal oxide thin films can be deposited at high temperatures using metalorganic reactants. Metalorganic reactants comprising two ligands, at least one of which is a cycloheptatriene or cycloheptatrienyl (CHT) ligand are used in some embodiments. The metal oxide thin films can be used, for example, as dielectric oxides in transistors, flash devices, capacitors, integrated circuits, and other semiconductor applications.
摘要:
A metal chloride generator is provided. The metal chloride generator is a metal chloride centrifugal reactor that can be operated under conditions sufficient to cause metal particles and chlorine in the generator to be brought into contact with one another and react using centrifugal force to form metal chloride. A process for manufacturing titanium dioxide that utilizes the metal chloride generator is also provided.
摘要:
Method for producing a metal oxide powder in which a) a material stream I containing at least one vaporous hydrolysable metal compound, b) a material stream II containing oxygen and c) a material stream III containing at least one fuel gas are brought to reaction, wherein d) via a feed-in point provided in a pipe piece A, wherein the pipe piece A comprises one or more static mixer elements, the material stream I is introduced into the material stream II, or vice versa, and thereby generates the material stream IV, then e) via a feed-in point provided in a pipe piece B, wherein the pipe piece B comprises one or more static mixer elements, the material stream III is introduced into the material stream IV, and thereby generates the material stream V, f) the material stream V leaving the pipe piece B is introduced into a reaction chamber, ignited there and converted into a flame and g) the resultant solids are separated off.
摘要:
The disclosure related to a method for making a nanowire structure. First, a free-standing carbon nanotube structure is suspended. Second, a metal layer is coated on a surface of the carbon nanotube structure. The metal layer is oxidized to grow metal oxide nanowires.
摘要:
A device for making nano-scale particles of titanium dioxide includes a vacuum chamber; an evaporator, a gas supplier, a vacuum pump assembly, and a product collecting device. The evaporator is mounted in the vacuum chamber. The gas supplier communicates with the vacuum chamber. The vacuum pump assembly communicates with the vacuum chamber. The product collecting device includes a pump, a guide pipe connected with the pump, and a powder collector communicating with the guide pipe. The pump communicates with the vacuum chamber. The guide pipe is inserted in the powder collector, the powder collector is filled with organic solvents. A method of making nano-scale particles of titanium dioxide using the device is also provided.
摘要:
Disclosed is a method/system for the production of titanium dioxide particles. The titanium dioxide particles are produced by oxidizing titanium tetrachloride in the presence of an agent which includes ultrafine titanium dioxide particles, and optionally, the presence of a Group 1a metal compound. The presence of the agent, with or without the optional Group 1a metal compound, also serves to control the particle size of the produced titanium dioxide particles.
摘要:
There are provided processes for treating red mud. For example, the processes can comprise leaching red mud with HCl so as to obtain a leachate comprising ions of a first metal (for example aluminum) and a solid, and separating said solid from said leachate. Several other metals can be extracted from the leachate (Fe, Ni, Co, Mg, rare earth elements, rare metals, etc.). Various other components can be extracted from solid such as TiO2, SiO2 etc.