Abstract:
Embodiments of systems and approaches for managing post-harvest crop quality and pests are described. Such a system may include a plurality of edge devices each comprising sensor components and collectively forming a mesh network, for measuring the local physical environment within stored crops and, for example, transmitting the measurements to a service from within the crop storage area. In certain embodiments, such a system may be used to manage post-harvest crops and storage areas—for example, approaches are described for determining fumigation treatment duration, determining phosphine dosage, determining heat treatment duration, and determining safe storage time for crops.
Abstract:
Embodiments of systems and approaches for managing post-harvest crop quality and pests are described. Such a system may include a plurality of edge devices each comprising sensor components and collectively forming a mesh network, for measuring the local physical environment within stored crops and, for example, transmitting the measurements to a service from within the crop storage area. In certain embodiments, such a system may be used to manage post-harvest crops and storage areas—for example, approaches are described for determining fumigation treatment duration, determining phosphine dosage, determining heat treatment duration, and determining safe storage time for crops.
Abstract:
A system bypasses harvesting in an assembly line grow pod when it is determined that a plant in a cart is not ready to harvest. The system includes a track, a cart configured to move on the track, one or more sensors and a controller. The cart includes an upper plate that supports a plant. The controller receives information about the plant from the one or more sensors, determines whether the plant in the cart is ready to harvest based on the information; and transmits an instruction for bypassing harvesting the plant in the cart in response to determination that the plant in the cart is not ready to harvest.
Abstract:
A harvesting system is provided. The harvesting system includes a track, a cart configured to move along the track, the cart including an upper plate configured to support a plant, one or more sensors, a lifter, and a controller. The controller includes one or more processors, one or more memory modules, and machine readable instructions stored in the one or more memory modules that, when executed by the one or more processors, cause the controller to: receive information from the one or more sensors, determine whether the plant in the cart is ready to harvest based on the information, and send to the lifter an instruction for tilting the upper plate by a degree in response to determination that the plant in the cart is ready to harvest.
Abstract:
An autonomously robotic machine for performing one or more agricultural operations. The machine includes a frame having a length and an adjustable width. A plurality of ground-engaging mechanisms are coupled to the frame for propelling the machine in a direction of travel. The machine includes a controller, a power-generating device, and a generator. The controller controls the machine, and the generator receives mechanical power from the power-generating device and produces electrical power. A docking assembly is coupled to the frame. The docking assembly includes a power unit and at least one coupler for coupling to any one of a plurality of agricultural implements.
Abstract:
A modeling framework for evaluating the impact of weather conditions on farming and harvest operations applies real-time, field-level weather data and forecasts of meteorological and climatological conditions together with user-provided and/or observed feedback of a present state of a harvest-related condition to agronomic models and to generate a plurality of harvest advisory outputs for precision agriculture. A harvest advisory model simulates and predicts the impacts of this weather information and user-provided and/or observed feedback in one or more physical, empirical, or artificial intelligence models of precision agriculture to analyze crops, plants, soils, and resulting agricultural commodities, and provides harvest advisory outputs to a diagnostic support tool for users to enhance farming and harvest decision-making, whether by providing pre-, post-, or in situ-harvest operations and crop analyses.
Abstract:
A conveyor system, that may be used with an agricultural harvester, such as a round baler, waste baler, combine, sugarcane harvester or cotton harvester, utilizes at least a first and a second conveyor belt of which at least one of the conveyor belts is independently movable in the forward and backward directions. The speed and direction of the conveyor belts can be controlled to perform continuous baling of crop in the baler.
Abstract:
A system including a foliage displacement system. The foliage displacement system can include a support structure and two or more surfaces movably coupled to the support structure and configured to move between an open configuration of the foliage displacement system and a closed configuration of the foliage displacement system. The two or more surfaces can be configured to move foliage of a plant toward a center of the plant such that crops of the plant that underlie the foliage are exposed when the foliage displacement system moves from the open configuration to the closed configuration. Other embodiments are provided.
Abstract:
An agricultural robot system and method of harvesting, pruning, culling, weeding, measuring and managing of agricultural crops. Uses autonomous and semi-autonomous robot(s) comprising machine-vision using cameras that identify and locate the fruit on each tree, points on a vine to prune, etc., or may be utilized in measuring agricultural parameters or aid in managing agricultural resources. The cameras may be coupled with an arm or other implement to allow views from inside the plant when performing the desired agricultural function. A robot moves through a field first to “map” the plant locations, number and size of fruit and approximate positions of fruit or map the cordons and canes of grape vines. Once the map is complete, a robot or server can create an action plan that a robot may implement. An action plan may comprise operations and data specifying the agricultural function to perform.
Abstract:
A method of cultivating plants including the step of harvesting the plant at a time within a period of 5 days prior to a lunar apogee and 5 days after the lunar apogee.