Abstract:
A system for an agricultural harvester includes a chopper assembly configured to separate a harvested material into debris and stalk. A primary extractor is configured to remove debris from the harvester. A sensor system is configured to capture data associated with harvested material conditions downstream of the primary extractor. A computing system includes one or more processors and one or more non-transitory computer-readable media that collectively store instructions that, when executed by the one or more processors, configure the computing system to perform operations. The operations include obtaining the data associated with the associated harvested material conditions downstream of the primary extractor, determining a current foliage ratio based on the data, determining an error between the current foliage ratio to a desired foliage ratio, and generating a harvest-related parameter of the primary extractor based at least in part on the error.
Abstract:
A threshing and separating system including a non-stationary rotor cage including a perforated cylindrical body extending in a longitudinal direction from a first open end portion to a second open end portion. The first open end portion supported by a first rotatable coupling point, and the second open end portion supported by a second rotatable coupling point. The threshing and separating system also includes a rotor configured to rotate within the non-stationary rotor cage to thresh harvested crop. The non-stationary rotor cage is configured to rotate about an axis extending between the first rotatable coupling point and the second rotatable coupling point, and to be rotationally driven by the rotor via the threshed harvested crop.
Abstract:
A method for operating a combine harvester configured with a number of working assemblies driven by at least one belt drive, and a ground drive, wherein the at least one belt drive and the ground drive are driven by a main drive comprising an engine, monitors for and accommodates slip. The working assemblies are monitored by sensors with respect to an occurrence of slip in the at least one belt drive. Signals representing slip are transmitted to a control device. The control device is connected to an input/output. The signals representing the slip are evaluated by the control device and the result is weighted. Depending on the weighting of the result, at least one measure is initiated by the control device, which results in a reduction of the slip and the at least one initiated measure is signalled by the input/output unit.
Abstract:
An agricultural harvester residue handling selection method having the steps of: selecting a chop/swath residue handling mode resulting in a mode selection; setting a chopper speed range for a chopper in a residue handling section dependent upon the mode selection; and positioning a windrow door dependent upon the mode selection.
Abstract:
A modeling framework for evaluating the impact of weather conditions on farming and harvest operations applies real-time, field-level weather data and forecasts of meteorological and climatological conditions together with user-provided and/or observed feedback of a present state of a harvest-related condition to agronomic models and to generate a plurality of harvest advisory outputs for precision agriculture. A harvest advisory model simulates and predicts the impacts of this weather information and user-provided and/or observed feedback in one or more physical, empirical, or artificial intelligence models of precision agriculture to analyze crops, plants, soils, and resulting agricultural commodities, and provides harvest advisory outputs to a diagnostic support tool for users to enhance farming and harvest decision-making, whether by providing pre-, post-, or in situ-harvest operations and crop analysis.
Abstract:
A method for operating a combine harvester configured with a number of working assemblies driven by at least one belt drive, and a ground drive, wherein the at least one belt drive and the ground drive are driven by a main drive comprising an engine, monitors for and accommodates slip. The working assemblies are monitored by sensors with respect to an occurrence of slip in the at least one belt drive. Signals representing slip are transmitted to a control device. The control device is connected to an input/output. The signals representing the slip are evaluated by the control device and the result is weighted. Depending on the weighting of the result, at least one measure is initiated by the control device, which results in a reduction of the slip and the at least one initiated measure is signalled by the input/output unit.
Abstract:
In a combine harvester comprising a threshing rotor and an internal chopper or beater behind the threshing rotor feeding into a rear straw chopper and spreader through a distribution chamber there is provided a distribution assembly mounted rearwardly of the internal chopper or beater for controlling distribution of the materials transversely of the distribution chamber. The distribution assembly includes a pair of rearwardly extending fins which are moved by a control system for operating the fins to change the distribution at the rear of the combine harvester. The fins are carried on a mounting which is translated side to side and the fins are curved in a direction longitudinally of the direction of movement of the material from the discharge. The fins are controlled in response to a plurality of sensors at spaced positions across the distribution chamber and the sensors measure crop flow at the sensor by detecting impact of crop material on the sensor.
Abstract:
An agricultural combine has a threshing assembly for threshing a crop to produce chaff and grain, a cleaning assembly for removing the chaff from the grain, and a control system. The threshing assembly and the cleaning assembly operate at threshing and cleaning settings, respectively, for tending to produce a balance between a threshing load applied across the threshing assembly and a cleaning load applied across the cleaning assembly that tends to have a favorable influence on grain loss. The control system is for sensing an imbalance between the threshing load and the cleaning load tending to have an unfavorable influence on grain loss, and for concurrently adjusting the threshing and cleaning settings of the threshing and cleaning assemblies, respectively, for tending to convert the imbalance between the threshing and cleaning loads to a balance between the threshing and cleaning loads tending to have a favorable influence on grain loss.
Abstract:
A material processing system having a barrel also referred to hereinafter having a milling or impact surface and a central axis. The impact surface is impervious, in that material cannot pass through the surface, but rather is contained by the surface. An impact mechanism is located within barrel and is rotates about the central axis. The system has inlet openings and formed in the barrel at axially spaced locations along the axis. At least one outlet opening is formed in the barrel at a location intermediate of the inlets. The impact mechanism includes a plurality of hammers mounted on shaft which rotates about the axis.