Abstract:
Embodiments of the invention relate to a method and apparatus for a zero voltage processor sleep state. A processor may include a dedicated cache memory. A voltage regulator may be coupled to the processor to provide an operating voltage to the processor. During a transition to a zero voltage power management state for the processor, the operational voltage applied to the processor by the voltage regulator may be reduced to approximately zero and the state variables associated with the processor may be saved to the dedicated cache memory.
Abstract:
The instant disclosure provides a power supply system and control method thereof. The power supply system comprises at least two power supplies electrically coupled in parallel. The control unit of the power supply generates a wake-up signal or a sleep signal according to the loading status. A second communication port of each power supply is coupled to a first communication port of the next stage power supply to establish cascading communications architecture. The first communication port receives a wake-up signal from the second communication port of the previous stage power supply and outputs a sleep signal to the second communication port of the previous stage power supply. The second communication port receives the sleep signal from the first communication port of the next stage power supply and outputs the wake-up signal to the first communication port of the next stage power supply.
Abstract:
Embodiments of the invention relate to a method and apparatus for a zero voltage processor sleep state. A processor may include a dedicated cache memory. A voltage regulator may be coupled to the processor to provide an operating voltage to the processor. During a transition to a zero voltage power management state for the processor, the operational voltage applied to the processor by the voltage regulator may be reduced to approximately zero and the state variables associated with the processor may be saved to the dedicated cache memory.
Abstract:
Embodiments of the invention relate to a method and apparatus for a zero voltage processor sleep state. A processor may include a dedicated cache memory. A voltage regulator may be coupled to the processor to provide an operating voltage to the processor. During a transition to a zero voltage power management state for the processor, the operational voltage applied to the processor by the voltage regulator may be reduced to approximately zero and the state variables associated with the processor may be saved to the dedicated cache memory.
Abstract:
A modular stacked DC architecture for traction system includes a propulsion system includes an electric drive, a direct current (DC) link electrically coupled to the electric drive, and a first DC-DC converter coupled to the DC link. A first energy storage device (ESD) is electrically coupled to the first DC-DC converter, and a second DC-DC converter is coupled to the DC link and to the first DC-DC converter. The system also includes a second energy storage device electrically coupled to the second DC-DC converter and a controller coupled to the first and second DC-DC converters and configured to control a transfer of energy between the first ESD and the DC link via the first and second DC-DC converters.
Abstract:
Embodiments of the invention relate to a method and apparatus for a zero voltage processor sleep state. A processor may include a dedicated cache memory. A voltage regulator may be coupled to the processor to provide an operating voltage to the processor. During a transition to a zero voltage power management state for the processor, the operational voltage applied to the processor by the voltage regulator may be reduced to approximately zero and the state variables associated with the processor may be saved to the dedicated cache memory.
Abstract:
A renewable energy source is converted into a desired DC voltage that is delivered to a DC motor controller of a permanent magnet motor. A micro controller monitors the amount of supplied renewable DC having the desired DC voltage, which is delivered to each phase of the motor by turning on FET switches on demand. If the renewable DC available at a given instant is not adequate to power a particular phase of the motor, then the micro controller turns on backup FET switches that are part of an independent drive circuit that is in parallel with drive circuits of the renewable DC power circuit, to deliver to the motor line DC, which is produced from an AC supply that has gone through an AC to DC converter. Once charged, the renewable DC power will power the next available phase of the motor.
Abstract:
Embodiments of the invention relate to a method and apparatus for a zero voltage processor sleep state. A voltage regulator may be coupled to a processor to provide an operating voltage to the processor. During a transition to a zero voltage power management state for the processor, the operational voltage applied to the processor by the voltage regulator may be reduced to approximately zero while an external voltage is continuously applied to a portion of the processor to save state variables of the processor during the zero voltage management power state.
Abstract:
Embodiments of the invention relate to a method and apparatus for a zero voltage processor sleep state. A voltage regulator may be coupled to a processor to provide an operating voltage to the processor. During a transition to a zero voltage power management state for the processor, the operational voltage applied to the processor by the voltage regulator may be reduced to approximately zero while an external voltage is continuously applied to a portion of the processor to save state variables of the processor during the zero voltage management power state.
Abstract:
A charger and discharger for a secondary battery includes a secondary battery coupled to an output stage of the charger and discharger, a first converter circuit including a first pulse voltage generator that outputs a first pulse voltage according to a first duty ratio, and a first inductor that outputs a first current in proportion to a value of an integral of the outputted first pulse voltage with respect to time to a positive electrode terminal of the secondary battery, a second converter circuit including a second pulse voltage generator that outputs a second pulse voltage according to a second duty ratio, and a second inductor that outputs a second current in proportion to a value of an integral of the outputted second pulse voltage with respect to time to a negative electrode terminal of the secondary battery, and first and second controllers controlling the duty ratios of the first and second pulse voltage generators, respectively.