Abstract:
A needle assembly includes a transparent or translucent housing with a fluid inlet end, a fluid outlet end, a flashback chamber, and a venting mechanism therebetween. Substantially axially aligned inlet and outlet cannulas extend from the housing and communicate with the chamber. A sealable sleeve covers the external end of the outlet cannula. Relative volumes of the cannulas, the chamber, and the sleeve are selected to provide rapid reliable flashback indicative of venous entry with an internal vent positioned within the housing so as to divide the interior into first and second chambers, with the second chamber being adapted to maintain a negative pressure therein relative to the external environment so as to inhibit leakage of blood from the needle on withdrawal from the patient.
Abstract:
A needle assembly includes a transparent or translucent housing with a fluid inlet end, a fluid outlet end, a flashback chamber, and a venting mechanism therebetween. Substantially axially aligned inlet and outlet cannulas extend from the housing and communicate with the chamber. A sealable sleeve covers the external end of the outlet cannula. Relative volumes of the cannulas, the chamber, and the sleeve are selected to provide rapid reliable flashback indicative of venous entry with an internal vent positioned within the housing so as to divide the interior into first and second chambers, with the second chamber being adapted to maintain a negative pressure therein relative to the external environment so as to inhibit leakage of blood from the needle on withdrawal from the patient.
Abstract:
A needle assembly includes a transparent or translucent housing with a fluid inlet end, a fluid outlet end, a flashback chamber and a venting mechanism therebetween. Substantially axially aligned inlet and outlet cannulas extend from the housing and communicate with the chamber. A sealable sleeve covers the external end of the outlet cannula. Relative volumes of the cannulas, the chamber and the sleeve are selected to provide rapid reliable flashback indicative of venous entry with an internal vent plug over the outlet of the flashback chamber to inhibit leakage of blood from the needle on withdrawal from the patient.
Abstract:
A method of storing on a remote storage device protocol information for a drug for administration via a peristaltic pump is disclosed. A communications path between the peristaltic pump and the remote storage device is provided. The protocol information for the drug is entered into the peristaltic pump. The protocol information is transferred from the peristaltic pump to the remote storage device. The protocol information for the drug is stored on the remote storage device. History information may be retrieved from the peristaltic pump. A user request is received requesting retrieval of history information from the peristaltic pump. A pump request is formatted to retrieve history information. The pump request to receive history information is transmitted to the peristaltic pump. The history information is received from the peristaltic pump. The history information is displayed and stored.
Abstract:
A method of storing on a remote storage device protocol information for a drug for administration via a peristaltic pump is disclosed. A communications path between the peristaltic pump and the remote storage device is provided. The protocol information for the drug is entered into the peristaltic pump. The protocol information is transferred from the peristaltic pump to the remote storage device. The protocol information for the drug is stored on the remote storage device. History information may be retrieved from the peristaltic pump. A user request is received requesting retrieval of history information from the peristaltic pump. A pump request is formatted to retrieve history information. The pump request to receive history information is transmitted to the peristaltic pump. The history information is received from the peristaltic pump. The history information is displayed and stored.
Abstract:
The present invention is directed to a vascular blood containment that allows a user to determine whether a blood vessel has been accessed and which provides access to the vessel. The vascular blood containment device includes a compression seal having increased reliability. The seal permits the passage of gas but prevents the passage of liquid. A valve providing access to a blood vessel through the blood containment device is configured to conform to an inner profile formed around a bore of the distal end of the outer housing. The configuration of the device permits the blood containment chamber to fill properly when the distal end of the blood containment device is positioned below the proximal end of the device.
Abstract:
A system for sealing a percutaneous puncture in a blood vessel in a living being and a method of sealing the puncture. The system includes a hemostatic closure, a blood vessel locator device for determining the position of the blood vessel via the percutaneous puncture, and a deployment instrument for deploying the closure within the puncture to seal the puncture. The vessel locator includes means for enabling blood from the vessel to flow therethrough so that the position of the vessel can be rapidly determined. Once the vessel has been located the deployment instrument, which includes a tubular carrier storing the closure, is extended into the puncture to deploy the closure. The closure basically comprises a radiopaque rigid anchor for location within the blood vessel, a compressed collagen plug for location within the puncture tract leading to the vessel, and a thin filament connecting the two in a pulley-like arrangement. The deployment instrument also includes a tamper which is used to mechanically deform the plug within the tract. Once the closure is positioned hemostasis occurs rapidly, thereby locking the closure in place.
Abstract:
A system, a closure, and method of use for sealing a percutaneous puncture in a blood vessel. The puncture includes an opening in the vessel wall and a tract leading to the opening. The system includes an introducer sheath and associated positioning device, a hemostatic puncture closure, and a deployment instrument. The positioning device enables the introducer sheath to be positioned at a desired position within the vessel. The deployment instrument includes a tubular carrier storing the closure. The closure comprises a rigid, e.g., radio-opaque, anchor, a compressed collagen plug, and a thin filament connecting the two in a pulley-like arrangement. The instrument and introducer are used to introduce the closure into the puncture, with the anchor located within the artery and with the collagen plug within the puncture tract. A locking member is provided to hold the closure in place at its operative position, whereupon hemostasis occurs rapidly, thereby sealling the puncture.
Abstract:
A suture applying device comprises a shaft which carries a pair of needles near its distal end. The needles are joined by a length of suture, and the shaft is used to both introduce the needles into a lumen of a body structure and to push the needles back through tissue on either side of the puncture site. After the needles have passed through the tissue, they are captured on the shaft and drawn outward through the tract, leaving a loop of suture behind to close the puncture site near the body lumen. The suture can then be tied and the knot pushed back through the tract to complete the closure. Alternatively, a locking fastener formed of a resorbable material can be placed into the penetration over the sutures and the sutures tied over the fastener.
Abstract:
A blood vessel entry indicator device is provided which includes a colored flexible membrane disposed within the transparent body of a hypodermic needle that is stretched over the proximal end of the needle cannula. As the needle reaches the inside of the blood vessel, pressure within the vessel is transferred through the cannula to the membrane which moves or inflates indicating that entry has been achieved. A stopper is provided for arterial use. Because it is pressure sensitive, the invention provides a positive indication of blood vessel entry, avoiding double puncture of the same blood vessel.