Abstract:
A system, a closure, and method of use for sealing a percutaneous puncture in a blood vessel. The puncture includes an opening in the vessel wall and a tract leading to the opening. The system includes an introducer sheath and associated positioning device, a hemostatic puncture closure, and a deployment instrument. The positioning device enables the introducer sheath to be positioned at a desired position within the vessel. The deployment instrument includes a tubular carrier storing the closure. The closure comprises a rigid, e.g., radio-opaque, anchor, a compressed collagen plug, and a thin filament connecting the two in a pulley-like arrangement. The instrument and introducer are used to introduce the closure into the puncture, with the anchor located within the artery and with the collagen plug within the puncture tract. A locking member is provided to hold the closure in place at its operative position, whereupon hemostasis occurs rapidly, thereby sealling the puncture.
Abstract:
A system, a closure, and method of use for sealing a percutaneous puncture in a blood vessel. The puncture includes an opening in the vessel wall and a tract leading to the opening. The system includes an introducer sheath and associated positioning device, a hemostatic puncture closure, and a deployment instrument. The positioning device enables the introducer sheath to be positioned at a desired position within the vessel. The deployment instrument includes a tubular carrier storing the closure. The closure comprises a rigid, e.g., radio-opaque, anchor, a compressed collagen plug, and a thin filament connecting the two in a pulley-like arrangement. The instrument and introducer are used to introduce the closure into the puncture, with the anchor located within the artery and with the collagen plug within the puncture tract. A locking member is provided to hold the closure in place at its operative position, whereupon hemostasis occurs rapidly, thereby sealing the puncture.
Abstract:
A system for sealing a percutaneous puncture in a blood vessel in a living being and method of use thereof. The system includes a hemostatic closure, a blood vessel locator device for determining the position of the blood vessel via the percutaneous puncture, and a deployment instrument for deploying the closure within the puncture to seal the puncture. The vessel locator includes means for enabling blood from the vessel to flow therethrough so that the position of the vessel can be rapidly determined. Once the vessel has been located the deployment instrument, which includes a tubular carrier storing the closure, is extend into the puncture to deploy the closure. The closure basically comprises a radiopaque rigid anchor for location within the blood vessel, a compressed collagen plug for location within the puncture tract leading to the vessel, and a thin filament connecting the two in a pulley-like arrangement. The deployment instrument also includes a tamper which is used to mechanically deform the plug within the tract. Once the closure is positioned hemostasis occurs rapidly, thereby locking the closure in place.
Abstract:
A system, a closure, and method of sealing a percutaneous puncture in an artery. The system includes a conventional introducer sheath, a hemostatic puncture closure, and an instrument for deploying the closure. The instrument includes a tubular carrier storing the closure. The carrier has a distally located free end to be extended through the puncture and its associated tract. The closure comprises a rigid anchor, a compressed collagen plug, and a thin filament connect the two in a pulley-like arrangement. The carrier is operated to eject the plug through the puncture and to then draw it against the free end of the introducer. The instrument and introducer are then withdrawn together to pull the anchor against the tissue contiguous with the puncture on the inside of the artery. Further withdrawing of the introducer and the instrument draws the plug out of the carrier into the puncture tract, whereupon it moves with respect to the anchor and into engagement with the outside of artery wall contiguous with the puncture to seal the puncture. The carrier also includes a tamper which is used to mechanically deform the plug within the tract. Once positioned the hemostasis occurs rapidly, thereby locking the closure device in place.
Abstract:
A system, a closure, and method of use for sealing a percutaneous puncture in a blood vessel. The puncture includes an opening in the vessel wall and a tract leading to the opening. The system includes an introducer sheath and associated positioning device, a hemostatic puncture closure, and a deployment instrument. The positioning device enables the introducer sheath to be positioned at a desired position within the vessel. The deployment instrument includes a tubular carrier holding the closure. The closure comprises a rigid, e.g., radio-opaque, anchor, a compressed collagen plug, and a thin filament connecting the two in a-pulley-like arrangement. The instrument and introducer are used to introduce the closure into the puncture, with the anchor located within the artery and with the collagen plug within the puncture tract. A locking member is provided to hold the closure in place at its operative position, whereupon hemostasis occurs rapidly, thereby sealing the puncture.
Abstract:
An instrument, a closure, and method of use for sealing an opening, e.g., a percutaneous incision or puncture, in a living being. The instrument includes a tubular carrier storing the closure. The carrier has a distally located free end to be extended through the opening. The closure comprises an anchoring portion, a sealing portion and a thin filament connected therebetween. The instrument is operated to eject the anchoring portion of the closure through the incision or puncture and to then draw that portion against the free end of the carrier. The instrument is then withdrawn to pull the anchoring portion of the closure against the tissue contiguous with the incision or puncture. Further withdrawing of the instrument draws the sealing portion of the closure out of the carrier, whereupon it moves with respect to the anchoring portion and into engagement with the tissue contiguous with the opening on the opposite side of the anchoring portion to seal it. Signals are produced to indicate proper operation.
Abstract:
A system and method for sealing a percutaneous puncture extending into internally located tissue, e.g., the peritoneum, of a living being. The system includes a sealing device and a deployment instrument. In one embodiment the sealing device comprises a substantially rigid anchor, a resorbable holding member, a collagen plug, and a resorbable thin filament connecting the anchor, holding member, and plug. The anchor or the plug or both may be formed of a resorbable material having a non-resorbable mesh reinforcement embedded therein. The deployment instrument is operated to place the anchor in the interior of the peritoneum and the plug and the holding member in the puncture tract, with both ends of the filament extending out of the puncture. The extending ends of the filament are formed into a knot, a portion of which extends through the skin contiguous with the puncture, to lock the closure in place. The reinforced mesh of the closure reinforces any scar tissue which forms at the opening. In an alternative embodiment the sealing device comprises only the anchoring member and the filament.
Abstract:
A system and method for sealing a percutaneous puncture extending into internally located tissue, e.g., the peritoneum, of a living being. The system includes a reinforcing device and a deployment instrument. The device comprises a substantially rigid anchor, a resorbable holding member, a collagen plug, and a resorbable thin filament connecting the anchor, holding member, and plug in a pulley-like arrangement. The anchor or the plug or both may be formed of a resorbable material having a non-resorbable mesh reinforcement embedded therein. The deployment instrument includes a tubular carrier in which the closure and a tamping member are located. The tamping member is operated to expel the closure so that the anchor is in the interior of the peritoneum and the plug and the holding member are in the puncture tract, with both ends of the filament extending out of the puncture and with the holding member fixedly secured to a portion of the filament adjacent one end. The other end of the filament is then drawn proximally while the tamping is pushed distally to draw the anchor member against the tissue contiguous with the opening. The tamper mechanically deforms the plug within the tract. The extending ends of the filament are formed into a knot, a portion of which extends through the skin contiguous with the puncture, to lock the closure in place. The reinforced mesh of the closure reinforces any scar tissue which forms at the opening.
Abstract:
A system, a closure, and method of use for determining the position of a blood vessel via a percutaneous puncture and for sealing the percutaneous puncture in the blood vessel. The system includes an introducer sheath and associated positioning device, a hemostatic puncture closure, and a deployment instrument. The positioning device enables the introducer sheath to be positioned at a desired position within the vessel. The deployment instrument includes a tubular carrier storing the closure. The carrier has a distally located free end to be extended via an introducer through the puncture and its associated tract. The closure comprises a radiopaque rigid anchor, a compressed collagen plug, and a thin filament connecting the two in a pulley-like arrangement. The carrier ejects the anchor through the introducer and puncture and then draws it against the free end of the introducer. The instrument and introducer are then withdrawn together to pull the anchor against the tissue contiguous with the puncture inside the artery. Further withdrawl draws the plug out of the carrier into the puncture tract, whereupon the plug moves with respect to the anchor into engagement with the outside of artery wall to seal the puncture or incision. A tensioning device limits the force applied to the filament. The carrier also includes a tamper which is used to mechanically deform the plug within the tract. Once positioned hemostasis occurs rapidly, thereby locking the closure in place.
Abstract:
A system, a closure, and method of use for determining the position of a blood vessel via a percutaneous puncture and for sealing the percutaneous puncture in the blood vessel. The system includes an introducer sheath and associated positioning device, a hemostatic puncture closure, and a deployment instrument. The positioning device enables the introducer sheath to be positioned at a desired position within the vessel. The deployment instrument includes a tubular carrier storing the closure. The carrier has a distally located free end to be extended via an introducer through the puncture and its associated tract. The closure comprises a radiopaque rigid anchor, a compressed collagen plug, and a thin filament connecting the two in a pulley-like arrangement. The carrier ejects the anchor through the introducer and puncture and then draws it against the free end of the introducer. The instrument and introducer are then withdrawn together to pull the anchor against the tissue contiguous with the puncture inside the artery. Further withdrawl draws the plug out of the carrier into the puncture tract, whereupon the plug moves with respect to the anchor into engagement with the outside of artery wall to seal the puncture or incision. A tensioning device limits the force applied to the filament. The carrier also includes a tamper which is used to mechanically deform the plug within the tract. Once positioned hemostasis occurs rapidly, thereby locking the closure in place.