Abstract:
A negative photoresist composition is used for the formation of thick films and includes (A) a novolak resin, (B) a plasticizer, (C) a crosslinking agent and (D) an acid generator. The composition is applied onto a substrate and thereby yields a photoresist film 5 to 100 μm thick. Likewise, the composition is applied onto a substrate of an electronic part, is patterned, is plated and thereby yields a bump.
Abstract:
New photoresists are provides that are suitable for short wavelength imaging, particularly sub-170 nm such as 157 nm. Resists of the invention comprise a fluorine-containing polymer, a photoactive component, and a solvent component. Preferred solvents for use on the resists of the invention can maintain the resist components in solution and include one or more preferably two or more (i.e. blends) of solvents. In particularly preferred solvent blends of the invention, each blend member evaporates at substantially equal rates, whereby the resist composition maintains a substantially constant concentration of each blend member.
Abstract:
SU-8 photoresist compositions are modified to improve their adhesion properties by adding 1% to 6% of an adhesion promoter selected from the group consisting of glycidoxypropanetrimethoxysilane, mercatopropyltrimethoxysilane, and aminopropyltrimethoxysilane. SU-8 photoresist compositions are modified to improve their resistance to cracking and film stress by adding 0.5% to 3% of a plasticizer selected from the group consisting of dialkylphthalates, dialkylmalonates, dialkylsebacates, dialkyladipates, and diglycidyl hexahydrophthalates. The improvements can be obtained simultaneously by adding both the adhesion promoter and the plasticizer to SU-8 photoresist compositions.
Abstract:
A positive working lithographic printing plate precursor comprising a lower layer containing a water-insoluble and alkali-soluble resin, and an upper heat-sensitive layer containing a water-insoluble and alkali-soluble resin and an infrared absorbing dye and increasing the solubility in an alkaline aqueous solution by heating, provided in this order on a hydrophilic support, and (a) the upper heat-sensitive layer containing at least two kinds of surface active agents, or (b) the lower layer and upper heat-sensitive layer each containing a surface active agent different from each other.
Abstract:
Holographic notch filters are provided that comprise photopolymer films, having an optical density of at least 2, mounted on a transparent substrate.
Abstract:
A photopolymerizable mixture containing one or more ethylenically unsaturated, photopolymerizable or photocrosslinkable compounds and a photopolymerization initiator which comprises a combination of an aromatic carbonyl compound of the type stated in claim 1 and an s-triazine compound containing one or more halogen-substituted methyl groups, photosensitive recording elements which possess a photopolymerizable recording layer consisting of these photopolymerizable mixtures, and a process for the production of lithographic printing plates using these recording elements.
Abstract:
The photosensitive composition of this invention contains (1) an ethylenically unsaturated component capable of forming a high polymer by addition polymerization or crosslinking, (2) a cyclic cisoid conjugated diene as a photooxidizable component capable of reacting with singlet oxygen to form an endoperoxide, and (3) a photooxygenation sensitizer. A process for preparing a photosensitive element, such as a relief printing plate, embodying a layer of such a composition is described.
Abstract:
A photosensitive element which comprises a support bearing a layer of negative-working tonable photoimaging composition comprising at least one organic polymeric binder (a), a photosensitizer (b) which generates an acid upon absorption of actinic radiation, and at least one compound taken from the group of ##STR1## as defined, binder (a) being plasticized by the decomposition product of either compound (c) or (d) or the combination thereof. The photosensitive element is useful in making color proofs.