Abstract:
Enhanced packet redirect capabilities are disclosed herein for draining traffic to a server. In an implementation, a server in an infrastructure service receives a packet from a stateless load balancer. The packet may comprise a request for content. A user space program on the server determines whether a connection identified in the packet belongs to the server. If the connection belongs to the server, the user space program handles the request for the content. If not, the server forwards the packet to a secondary server in the infrastructure service. The secondary server, to which the connection may belong, can then handle the request.
Abstract:
A system can include a gateway, a plurality of network function nodes, and a distributed load balancer including load balancer nodes each having a flow table portion stored thereon. The load balancer nodes can form a node chain having a tail and head nodes. A load balancer node can receive a packet from the gateway. In response, the load balancer node can generate a query, directed to the tail node, that identifies the packet and a network function identifier associated with a network function node that is proposed to handle a connection. The tail node can determine whether an entry for the connection exists in a flow table portion associated with the tail node. If not, the tail node can initiate an insert request for writing the entry for the connection via the head node. The entry can then be written to all load balancer nodes in the node chain.
Abstract:
Various embodiments manage the migration of servers. In one embodiment, a set of server-level dependency information is obtained for servers to be migrated from a source computing environment to a target computing environment. A set of network configuration data is obtained for a plurality of network devices associated with the servers. The set of server-level dependency information is updated to include one or more additional dependencies of at least one of the servers based on the set of network configuration data. Updating the set of server-level dependency information generates an updated set of dependency information. The servers are assigned to multiple migration groups based on the updated set of dependency information. The migration groups optimize cross-group dependencies among the migration groups.
Abstract:
A novel design of a gateway that handles traffic in and out of a network by using a datapath pipeline is provided. The datapath pipeline includes multiple stages for performing various data-plane packet-processing operations at the edge of the network. The processing stages include centralized routing stages and distributed routing stages. The processing stages can include service-providing stages such as NAT and firewall. The gateway caches the result previous packet operations and reapplies the result to subsequent packets that meet certain criteria. For packets that do not have applicable or valid result from previous packet processing operations, the gateway datapath daemon executes the pipelined packet processing stages and records a set of data from each stage of the pipeline and synthesizes those data into a cache entry for subsequent packets.
Abstract:
A method of remotely providing an application includes identifying a visible portion of a first application window on a display of a client. A data stream corresponding only to the visible portion of the first application window is received. The received data stream is provided to the client such that the visible portion of the first application window is able to be presented on the display.
Abstract:
Redirecting message flows to bypass load balancers. A destination intermediary receives a source-side message that includes a virtual address of a load balancer as a destination, and that is augmented to include a network address of a destination machine as a destination. The destination intermediary determines that a source intermediary should address subsequent network messages that originate from a source machine and that are associated with the same multi-message flow to the destination machine while bypassing the load balancer. The destination intermediary modifies the source-side message so the destination for the source-side message addresses the destination machine, and passes the modified source-side message to the destination machine. The destination intermediary receives a response from the destination machine identifying the source machine as its destination, and modifies the response so a source address identifies the virtual address of the load balancer, and dispatches the modified response to the source machine.
Abstract:
A method for managing the provision of services in a telecommunication network, wherein the services are offered through a set of servers and the telecommunication network includes at least one first network entity and a plurality of second network entities, each second network entity being adapted to access a sub-set of the servers. The method includes: 1) receiving at the first network entity a request for a predetermined service from user equipment; and 2) at the predetermined first network entity, identifying, based on the service requested by the user equipment, the second network entity which, among the plurality of second network entities, has access to the server that, among the set of servers, allows meeting the request for the predetermined service.
Abstract:
Various embodiments provide a method and apparatus for providing SDN flow distribution without requiring per-connection state in the network. In particular, the SDN flow distribution is realized in network elements within the forwarding path of packets by providing in those network elements with a controller capable of mapping traffic flows onto a set of target servers.
Abstract:
A novel design of a gateway that handles traffic in and out of a network by using a datapath pipeline is provided. The datapath pipeline includes multiple stages for performing various data-plane packet-processing operations at the edge of the network. The processing stages include centralized routing stages and distributed routing stages. The processing stages can include service-providing stages such as NAT and firewall. The gateway caches the result previous packet operations and reapplies the result to subsequent packets that meet certain criteria. For packets that do not have applicable or valid result from previous packet processing operations, the gateway datapath daemon executes the pipelined packet processing stages and records a set of data from each stage of the pipeline and synthesizes those data into a cache entry for subsequent packets.
Abstract:
A novel design of a gateway that handles traffic in and out of a network by using a datapath pipeline is provided. The datapath pipeline includes multiple stages for performing various data-plane packet-processing operations at the edge of the network. The processing stages include centralized routing stages and distributed routing stages. The processing stages can include service-providing stages such as NAT and firewall. The gateway caches the result previous packet operations and reapplies the result to subsequent packets that meet certain criteria. For packets that do not have applicable or valid result from previous packet processing operations, the gateway datapath daemon executes the pipelined packet processing stages and records a set of data from each stage of the pipeline and synthesizes those data into a cache entry for subsequent packets.