Abstract:
A method and network entity for enabling higher order modulation (HOM) mode support for HOM capable wireless devices. The method includes determining a legacy mode power offset value for HOM mode capable wireless devices in legacy modulation mode and calculating a power headroom value for sending downlink data to the HOM mode capable wireless devices. When the power headroom value exceeds a threshold value, the HOM mode support for the HOM mode capable wireless devices is enabled using the identified legacy mode power offset value. When the power headroom value does not exceed the threshold value, and a HOM mode power offset value is available, the HOM mode power offset value being less than the legacy modulation mode power offset value, the HOM mode support for the HOM mode capable wireless devices is enabled using the HOM mode power offset value.
Abstract:
A heart generated signal is provided by a heart sensor of a mobile device to an analog to digital (A/D) converter for A/D converting the sensor provided signal. The A/D converted heart signal is processed to provide heart rate. The heart rate is recorded or stored in the mobile device or is transmitted in a wireless communication system. The mobile device receives sensor provided Electro Cardiogram (ECG) signal. The ECG signal is stored or is provided to an interface unit. The mobile device has transceivers for receiving and transmitting Orthogonal Frequency Division Multiplexed (OFDM) signals and for modulating and transmitting spread spectrum baseband signals. The spread spectrum baseband signals have cross-correlated in-phase and quadrature-phase filtered baseband signals.
Abstract:
According to some embodiments, a method of performing a Hybrid Automatic Repeat Request (HARQ) process comprises receiving, by a wireless device executing a HARQ process, a first transport block encoded according to a category type of the wireless device and a first modulation coding scheme; decoding, by the HARQ process, the first transport block using a number of soft bits N; receiving, by the wireless network element, a second transport block encoded according to the equipment type and a second modulation coding scheme different from the first modulation coding scheme; and decoding, by the HARQ process, the second transport block using the number of soft bits N.
Abstract:
Digital mobile communications devices and methods for processing, modulation and demodulation, transmission and reception of spread spectrum signals, Orthogonal Frequency Division Multiplexed (OFDM) signals and conversion of spread spectrum signals into OFDM signals. Received spread spectrum signals from 3G cellular systems are converted into OFDM signals and transmitted in a Wi-Fi network. Received OFDM signals, received in a cellular system in a first RF frequency band, are demodulated and in a repeater mode are re-transmitted in a cellular system in a second OFDM radio frequency band. One or more receivers and demodulators for receiving demodulating and processing received signals into location finder information. A video camera in mobile device generates video signal and transmits video signal with location finder information signal.
Abstract:
Digital mobile communications devices and methods for processing, modulation and demodulation, transmission and reception of spread spectrum signals, Orthogonal Frequency Division Multiplexed (OFDM) signals and conversion of spread spectrum signals into OFDM signals. Received spread spectrum signals from 3G cellular systems are converted into OFDM signals and transmitted in a Wi-Fi network. Received OFDM signals, received in a cellular system in a first RF frequency band, are demodulated and in a repeater mode are re-transmitted in a cellular system in a second OFDM radio frequency band. One or more receivers and demodulators for receiving demodulating and processing received signals into location finder information. A video camera in mobile device generates video signal and transmits video signal with location finder information signal.
Abstract:
Communication methods for receiving and demodulating in mobile devices signals from multiple locations and for providing baseband position finder signal. Providing in a first cross-correlator and filter cross-correlated in-phase and quadrature-phase filtered baseband signals from a digital input signal and in a second cross-correlator spread spectrum signals from a voice input signal. Providing Orthogonal Frequency Division Multiplex (OFDM) signal from a video input signal. Combining baseband position finder signal with one or more of cross-correlated in-phase and quadrature-phase filtered baseband signals, or cross-correlated in-phase and quadrature-phase spread spectrum baseband signals, or OFDM baseband signal, into a combined baseband signal and modulating and transmitting combined signal. Touch screen control signal for control of mobile devices.
Abstract:
Methods and systems are provided for simple cable phone and internet (SCPI) device that may be coupled with a cable modem (CM) and one or more SCPI head ends, e.g., via an SCPI access point. The CM may be capable of communicating a first modulated signal with a cable modem termination system (CMTS), via the SCPI device. The SCPI device may be capable of combining a second modulated signal to the first modulated signal thereby generating a combined signal. The SCPI device may be capable of sending the combined signal comprising the first modulated signal and the second modulated signal to the CMTS and an SCPI head end. The SCPI head end may be capable of processing the combined signal and extract information and/or data associated with a service. The SCPI head end may deliver the extracted information and/or data to an appropriate gateway.
Abstract:
It is presented a method, performed in a network node, for enabling selection of modulation mode for a user equipment, UE. The method comprises: determining whether to provide higher order modulation, HOM, mode support for the UE; when HOM mode support is to be provided, selecting at least one HOM table for the UE; and when HOM mode support is not to be provided, selecting at least one non-HOM table for the UE.
Abstract:
A wireless network is provided that includes a base station and subscriber stations that communicate with the base station using radio frequency (RF) time division duplex (TDD) signaling. The base station may establish medium access control (MAC) connections with each station. The base station monitors communications with the stations and, in accordance, assigns stations or MAC connections to modulation groups. The base station transmits signals on MAC connections or to stations in a modulation group in adjacent TDD slots within a TDD frame. The base station may receive access requests from the stations, evaluate traffic requirements for the stations, and determine a longest downlink portion for the stations. The base station then allocates downlink and uplink portions of a TDD frame according to the length of the longest downlink portion.
Abstract:
Embodiments of full-duplex systems with reconfigurable antennas are described. In one embodiment, a full-duplex reconfigurable antenna transceiver includes a transmit chain, a receive chain, and a reconfigurable antenna having a plurality of reconfigurable modes. The transceiver may also include an antenna controller configured to set a mode of the reconfigurable antenna. According to other aspects, the transceiver may also include a signal processor configured to transmit a set of training symbols during a training interval. The antenna controller may be further configured to select a respective mode of the reconfigurable antenna for each training symbol in the set of training symbols. Additionally, the antenna controller may be configured to calculate a received Signal-of-Interest to Interferer Ratio (SIR) for each training symbol of the set of training symbols. In this context, a full-duplex system utilizing a reconfigurable antenna may achieve significant rate improvement compared to half-duplex systems.