Abstract:
The present document provides a modulation processing method and apparatus for high-order coding, a base station and a terminal, herein the method includes: a base station selecting a Modulation and Coding Scheme (MCS) table according to a transmission type and predefined information, herein the MCS table includes a MCS table supporting a M-order modulation and a MCS table not supporting a M-order modulation, herein M>64; and the base station transmitting downlink control signaling to a terminal, the downlink control signaling including a modulation and coding scheme field IMCS, herein the IMCS is based on the MCS table supporting or not supporting a M-order modulation selected by the base station.
Abstract:
A transmitting system and a method of transmitting digital broadcast signal are disclosed. The method of transmitting digital broadcasting signal in a transmitter includes forming a data group including mobile data, known data sequences, trellis initialization data bytes, wherein the known data sequences are sequentially concatenated with the trellis initialization bytes, interleaving data in the data group, wherein the data group includes a plurality of data blocks and scalable data blocks, wherein the known data sequences inserted in a predetermined area of the data group, trellis encoding on the interleaved data and initializing memories for the trellis encoding using initial bits of the trellis initialization data bytes in the interleaved data, wherein the initial bits of the trellis initialization data bytes are calculated using exclusive or operation with predetermined memory values of the memories for the trellis encoding, transmitting a broadcast signal including the trellis encoded data during a slot.
Abstract:
An embodiment of the present invention provides a phase locked loop that operates on clock signals derived from an RF clock signal generated by the phase locked loop. A frequency reference input provides a reference clock. A controllable oscillator generates the RF clock signal. A phase detection circuit operates on the reference clock to provide digital phase error samples indicative of a phase difference between the reference clock and the RF clock. A dithering circuit is coupled to the reference signal and injects a short sequence dither signal into the reference signal in order to overcome quantization noise and thereby improve RMS phase-error detection for integer channels.
Abstract:
An embodiment of the present invention provides a phase locked loop that operates on clock signals derived from an RF clock signal generated by the phase locked loop. A frequency reference input provides a reference clock. A controllable oscillator generates the RF clock signal. A phase detection circuit operates on the reference clock to provide digital phase error samples indicative of a phase difference between the reference clock and the RF clock. A dithering circuit is coupled to the reference signal and injects a short sequence dither signal into the reference signal in order to overcome quantization noise and thereby improve RMS phase-error detection for integer channels.
Abstract:
Techniques for detecting and demodulating a signal/transmission are described. Signal detection is performed in multiple stages using different types of signal processing, e.g., using time-domain correlation for a first stage, frequency-domain processing for a second stage, and time-domain processing for a third stage. For the first stage, products of symbols are generated for at least two different delays, correlation between the products for each delay and known values is performed, and correlation results for all delays are combined and used to declare the presence of a signal. For demodulation, the timing of input samples is adjusted to obtain timing-adjusted samples. A frequency offset is estimated and removed from the timing-adjusted samples to obtain frequency-corrected samples, which are processed with a channel estimate to obtain detected symbols. The phases of the detected symbols are corrected to obtain phase corrected symbols, which are demodulated, deinterleaved, and decoded.
Abstract:
A method and apparatus estimate an offset between a carrier frequency of a transmitter and a local reference frequency of a receiver. A received signal is separated into frequency synchronization signals and data, and a determination is made whether the frequency synchronization signals are adequate for estimating the frequency offset. This determination may be made based on, e.g., an estimated Doppler spread, an estimated signal to noise ratio, and/or an available amount of frequency offset estimation time. The frequency offset is estimated based on the determination results. If the frequency synchronization signals are adequate for estimating the frequency offset, the frequency synchronization signals are used for determining the frequency offset. Otherwise, the rate of the frequency synchronization signals is increased, e.g., by using the data as frequency synchronization signals, in which case the data is combined with the frequency synchronization signals to determine the frequency offset.
Abstract:
Provided is a method of generating a Device-to-Device Synchronization Signal (D2DSS) by a terminal according to an embodiment of the present disclosure. The method includes determining a service attribute for identifying whether the terminal is serviced by at least one base station; and generating a D2DSS for identifying whether the terminal is serviced by the base station, based on the determination result. In addition, provided is a method of configuring D2D synchronization by a terminal according to an embodiment of the present disclosure. The method includes receiving a signal from at least one base station or another device; determining whether a synchronization signal is detected from the received signal; and when the synchronization signal is detected, configuring synchronization with the another device based on the timing reference of the detected synchronization signal.
Abstract:
To quickly and robustly detect the presence of an incumbent user and rapidly relinquish the spectrum to the incumbent user when necessary, carrier recovery is performed in a receiver of the secondary user's cognitive or software radio prior to performing correlation detection with an upsampled reference signal to correct for large frequency offsets and improve the performance of the correlation detector. To detect a received signal, a pilot value is added to a reference signal. The reference signal is upsampled to a sampling frequency of the received signal. The upsampled reference signal is correlated with a demodulated baseband signal to produce a correlation value. It is then determined whether the received signal is present if the correlation value is greater than a predetermined detection threshold value.
Abstract:
An embodiment of the present invention provides a phase locked loop that operates on clock signals derived from an RF clock signal generated by the phase locked loop. A frequency reference input provides a reference clock. A controllable oscillator generates the RF clock signal. A phase detection circuit operates on the reference clock to provide digital phase error samples indicative of a phase difference between the reference clock and the RF clock. A dithering circuit is coupled to the reference signal and injects a short sequence dither signal into the reference signal in order to overcome quantization noise and thereby improve RMS phase-error detection for integer channels.
Abstract:
To quickly and robustly detect the presence of an incumbent user and rapidly relinquish the spectrum to the incumbent user when necessary, carrier recovery is performed in a receiver of the secondary user's cognitive or software radio prior to performing correlation detection with an upsampled reference signal to correct for large frequency offsets and improve the performance of the correlation detector. To detect a received signal, a pilot value is added to a reference signal. The reference signal is upsampled to a sampling frequency of the received signal. The upsampled reference signal is correlated with a demodulated baseband signal to produce a correlation value. It is then determined whether the received signal is present if the correlation value is greater than a predetermined detection threshold value.