Abstract:
An acoustic wave device includes a piezoelectric substrate and an IDT electrode on the piezoelectric substrate. The IDT electrode includes a first comb-shaped electrode including first electrode fingers and a second comb-shaped electrode including second electrode fingers. The IDT electrode includes a first portion in which a main electrode layer includes a first metal and a second portion in which a main electrode layer includes a second metal. The first electrode fingers and the second comb-shaped electrode include first facing portions facing each other with a gap in between, and the second electrode fingers and the first comb-shaped electrode include second facing portions facing each other with a gap in between. At least one of the first facing portions and second facing portions is the second portion, and a portion of the IDT electrode other than the second portion is the first portion.
Abstract:
A multiplexer includes filters on one principal surface of a mounting substrate and having mutually different frequency bands, and an inductance element which is incorporated in the mounting substrate and one end of which is connected to one end of the filter. The other end of the inductance element and one end of each of the filters, are connected to each other at a common connection point. The inductance element is defined by spiral wiring conductors disposed in first and second wiring layers provided in an inner layer of the mounting substrate. The mounting substrate includes third and fourth wiring layers which are adjacent to the first and second wiring layers, and in which no ground pattern is provided in a portion corresponding to a formation region of the inductance element.
Abstract:
A wave separator includes an n number (n being a natural number of 3 or larger) of band pass filters having an n number or larger of mutually different pass bands, and a common terminal. For a first of the band pass filters that is one of a band pass filter having a center frequency of a pass band at a lowest side and a band pass filter having a center frequency of a pass band at a highest side and that has a larger or equal difference in a center frequency of a pass band from an adjacent band pass filter as compared with the other band pass filter satisfies a predetermined configuration for a second band pass filter having a pass band adjacent to the first band pass filter.
Abstract:
In a filter device, a transversal elastic wave filter, which defines a delay element, is connected in parallel with a band pass filter. The transversal elastic wave filter has the same amplitude characteristic as and the opposite phase to the band pass filter at a desired frequency inside an attenuation range of the band pass filter. When a wavelength determined by an electrode finger period of IDTs and is denoted by λ, the distance between the first IDT and the second IDT of the elastic wave filter is about 12λ or less.
Abstract:
The present application relates to a biosensor that employs an acoustic cavity to store mechanical energy. In particular examples, the biosensor includes an electrode region and one or more reflector regions to form the acoustic cavity, as well as a functionalized active area disposed in proximity to the cavity. Methods of making and using such biosensors are also described herein.
Abstract:
There is provided a tapered elastic wave filter higher in impedance than a conventional filter where one input-side IDT electrode and one output-side IDT electrode are disposed. Filter parts which are the same in the structure of an input-side IDT electrode and in the structure of an output-side IDT electrode are disposed, and when the first filter part is disposed on a lower side and the second filter part is disposed on an upper side of the first filter part so that the input-side IDT electrodes are connected and the output-side IDT electrodes are connected, in cascade (in series) between a signal port and a ground port, an upper busbar in each of the IDT electrodes of the first filter part and a lower busbar in each of the IDT electrodes of the second filter part are electrically connected to each other.
Abstract:
An SAW device includes: a piezoelectric substrate 1; a first and a second SAW elements 2, 3 having three or more odd-number IDT electrodes 4-9 and reflector electrodes 10-13 arranged on the piezoelectric substrate 1; lines 16 which cascade-connect the first and the second SAW elements 2, 3; a first unbalanced signal terminal 14 connected to the IDT electrodes 4, 6 arranged at the both ends of the first SAW elements 2; and a second unbalanced signal terminal 15 connected to the IDT electrodes 7, 9 arranged at the both ends of the second SAW element 3. In each of the first and the second SAW elements 2, 3, one bus bar electrode 17 of each of center IDT electrodes 5, 8 is split into two, and non-split bus bar electrodes 18, 19 of at least one center IDT electrode of the first and the second SAW elements 2, 3 are connected to a reference potential electrode and the lines 16 are made to be balanced signal lines.
Abstract:
Sacrificial electrodes with fractal-shaped are formed on a SAW (surface acoustic wave) device. The sacrificial electrodes discharge electro-static charge in the SAW device for protecting the IDT (inter-digital transducer) from electrostatic break. Moreover, the sacrificial electrodes can control the path and the discharging degree of the electro-static discharge to avoid losing the electro-static discharge protection due to the sacrificial electrodes are broken.
Abstract:
A transversal surface acoustic wave filter includes an input-side interdigital electrode, an output-side interdigital electrode, and a shield electrode, which are provided on a surface wave substrate. The distance between an excitation point of the input-side interdigital electrode, which is closest to the shield electrode, and an intermediate point between the shield electrode-side end of the input-side interdigital electrode and the input-side interdigital electrode-side end of the shield electrode is in the range of about 0.8λ to about 0.975λ, wherein λ is the wavelength of a surface wave.
Abstract:
A surface acoustic wave sensor or identification device has a piezoelectric substrate, an interdigitated transducer (IDT) input/output mounted on a substrate for receiving a radio frequency (RF) signal and propagating a corresponding surface acoustic wave along a surface of the substrate. An IDT reflector array is mounted on the substrate and operable to receive a surface acoustic wave and reflect the surface acoustic wave in modified form back to the IDT input/output for transmission of a corresponding modified RF signal from the device. The IDT reflector array has at least one reflector segment whose reflectivity characteristics are controlled to control the nature of the modified RF signal.