Abstract:
Technical solutions are described for current sensor fault mitigation for systems with permanent magnet DC drives. An example power steering system includes a brush motor, and a motor control system that generates an amount of torque using the brush motor, the amount of torque corresponding to a torque command. The motor control system includes a current sensor fault detector that detects a current sensor fault associated with a current sensor used to measure a current across the brush motor. The motor control system further includes a velocity observer that computes an estimated motor velocity in response to the current sensor fault. The motor control system further includes a feedforward controller that generates a current command for generating the amount of torque using the brush motor, the current command generated using the estimated motor velocity.
Abstract:
Systems and methods for controlling the operating speed and the torque of an electric motor using an operational model are described. An operational model for the electric motor, including a plot of engine performance parameters, is used for reference, and a most efficient output path, which may pass through an optimal operation region in the operational model, is selected. The most efficient output path may be determined, for example, according to locations of a current output state and a to-be-reached target state in the operational model, enabling the operating state of the motor to reach the target state from the current operating state. By selecting a more efficient output path, the operating efficiency of the motor may be optimized, the life of a battery improved and/or the operating mileage of the vehicle may be increased, without significantly reducing the driving experience.
Abstract:
Systems and methods for controlling the operating speed and the torque of an electric motor using an operational model are described. An operational model for the electric motor, including a plot of engine performance parameters, is used for reference, and a most efficient output path, which may pass through an optimal operation region in the operational model, is selected. The most efficient output path may be determined, for example, according to locations of a current output state and a to-be-reached target state in the operational model, enabling the operating state of the motor to reach the target state from the current operating state. By selecting a more efficient output path, the operating efficiency of the motor may be optimized, the life of a battery improved and/or the operating mileage of the vehicle may be increased, without significantly reducing the driving experience.
Abstract:
A motor control device configured to control a motor, includes a first memory; a second memory different from the first memory; a communication interface circuit configured to receive a control command from an external device; a command parser configured to store control information in the first memory and in the second memory when the control command includes control information defining an operation of the motor, and to generate a response signal including the control information stored in the first memory when the control command includes a command for verifying a communication state and transmit the response signal to the external device via the communication interface circuit; a control unit configured to read the control information from the second memory; and a drive signal generator.
Abstract:
An embodiment of a control system includes a current command module configured to receive a torque command and output a current command for controlling a direct current (DC) motor, and a current capability limiting module configured to receive the current command and a current limit indicating a maximum motor current, limit the current command based on the current limit, and actively further limit the current command based on a capability limit value.
Abstract:
A power tool includes a housing coupled to an electrical power source, a motor contained in the housing, and a motor control circuit that controls output speed of the motor. A light unit is coupled to the housing to illuminate a work surface. A light unit control circuit controls illumination of the light unit. A switch unit is coupled to the housing and selectively operable to control the operation of the motor control circuit and the light unit control circuit. The light unit control circuit includes a timer configured to cause the light unit to illuminate a first brightness level when the switch unit is actuated, and to remain illuminated at the first brightness level for a predetermined time period after the trigger is actuated. The predetermined time period restarts if the switch unit is not deactivated before the end of the predetermined time period.
Abstract:
A method operates a brushed commutator motor of an adjusting drive in a motor vehicle, particularly a window lifter, having a rotor and having a stator. An angular position of the rotor with respect to the stator is determined. The angular position is used to determine a ripple within the torque, which ripple can be expected on the basis of the commutation. The motor current is adapted such that the amplitude of the ripple that can be expected remains below a determined limit value.
Abstract:
A method is provided for identifying a battery pack that is operably coupled to a battery charger. The method comprises: measuring voltage at a plurality of designated terminals of a first battery pack while the battery pack is coupled to the battery charger; determining how many of the designated terminals are connected to a reference voltage, such as battery positive; and identifying an attribute of the battery pack based on how many of the designated terminals are connected to the reference voltage.
Abstract:
Disclosed is a motor driving circuit of an EPB system which may reduce dark current. The present invention provides a motor driving circuit, including: a motor which includes two power input terminals to be applied with a battery power and a ground power; an H-bridge circuit which alternatively applies the battery power and the ground power to the two power input terminals in response to four motor driving signals applied from an ECU to drive the motor; an activating transistor which is connected between the battery power and the H-bridge circuit and is activated in response to a fail-safe control signal applied from the ECT to apply the battery power to the H-bridge circuit; and two monitoring units which are connected to corresponding input terminals of two power input terminals of the motor to distribute a voltage level which is applied to the motor and output monitoring signals.
Abstract:
A method is provided for operating a power tool having a motor powered by a battery. The method includes: delivering power from the battery to the motor in accordance with an operator input; detecting a condition of the power tool indicating a shutdown of the power is imminent; and fading the power delivered from the battery to the motor, in response to the detected condition, through the use of a controller residing in the power tool.