Abstract:
An explosion-proof device includes a frame having a hollow shape, the frame housing an electrical component and a battery capable of supplying the electrical component with electric power. A protection device is configured to stop electric supply to the electrical component from the battery, if there is a risk of an explosive atmosphere entering the frame. The battery is housed in an explosion-proof container, within the frame, and thus it is possible to suppress damage to surroundings effectively even in case of ignition of an explosive atmosphere flowing into the frame by the battery.
Abstract:
A protection monitoring system is provided that includes a protection fault handler. The protection fault handler includes a protection fault indicator. The protection fault handler is configured to activate the protection fault indicator upon indication of a protection fault signal. Moreover, the protection fault signal is indicative of a critical fault which has occurred in a protection system monitored by the protection monitoring system. The protection monitoring system also includes a user inhibit handler. The user inhibit handler includes a user inhibit indicator. Moreover, the user inhibit handler is configured to activate the user inhibit indicator upon indication of a user inhibit signal. Furthermore, the user inhibit signal is indicative of a user-enabled alarm inhibit or a user-enabled bypass.
Abstract:
A synthetic fault signal generator assembly is remotely located on a branch circuit downstream from a circuit breaker protecting a load. The synthetic fault signal generator assembly is configured to detect an improper circuit condition that is not independently detected, detectable, or actionable by the circuit breaker such as, for example, a load or outlet receptacle specific problem that can lead to equipment damage or property damage if not mitigated. In response to the improper circuit condition being detected, the synthetic fault signal generator assembly generates a synthetic fault signal, which causes the circuit breaker to trip. The synthetic fault signal generator assembly can inject the synthetic fault signal into the branch circuit to provide the synthetic fault signal to the circuit breaker.
Abstract:
A transformer (26) is monitored by a dissolved gas monitoring device (28). A method (36) in the form of executable code instructs a processor (34) to analyze a condition of the transformer (26). The method includes receiving (90), from the monitoring device (28), data elements (60) in the form of values (70) of dissolved gases (72) associated with operation of transformer (26) during a period of time. Periodic characteristics responsive to the operation of the transformer (26) are identified (92) from the data elements (60). The periodic characteristics may include a daily, semi-annual, and/or annual fluctuation of gas generation in response to transformer loading. A gas generation rate trend (112) is distinguished from the periodic characteristics, the condition of the transformer (26) is determined and its future condition may be predicted in response to the trend (112). The condition is presented to a user (58).
Abstract:
A control switch for controlling the operation of an overhead irrigation system based upon the moisture level of the ground in an area to be irrigated. The control switch includes first and second moisture detection probes positioned at first and second underground locations in the area to be irrigated, which, upon detection that the soil is dry, place a positive conductive charge on the switch, thereby turning on the irrigation equipment. Upon detection that the soil is wet, the probes remove the conductive charge, thereby turning off the irrigation equipment. The control switch provides varying degrees of sensitivity to soil moisture, and varying time delays in turning the switch on when the soil is dry, and in turning the switch off when the soil is wet. A pulsing current protection circuit permits a positive DC signal taken from an AC triac to turn on the triac when both the AC and DC portions of the control switch share a common ground.
Abstract:
Apparatus for the supervision of a sudden pressure relay (SPR) system which protects a power system network transformer having a plurality of windings associated with each phase of the power system network. This apparatus overcomes the difficulties associated with previous overcurrent supervision of the SPR system for multiple-winding transformers. The apparatus utilizes a maximum restraint signal selection network which offers a discriminating differentiation between high and low current levels in all of the transformer windings and accomplishes this in one embodiment with a single measuring unit per phase of the power system network. For each phase, when the selected maximum restraint signal exceeds a predetermined level, the supervisory unit blocks the SPR from operating the breakers which isolate the power transformer from the power system network. This blocking condition is relieved after a predetermined time period from when the selected restraint signal falls below the predetermined level. The apparatus is further capable of detecting both an internal fault condition and an inrush energization condition of the power transformer and for inhibiting the blockage of the SPR from operating the breakers during either of these detected conditions.
Abstract:
In a two-way cable television (CATV) contention system peak upstream loading is accommodated by varying the length of the upstream transmission window during which a subscriber may randomly transmit for improved subscriber access to the CATV headend. Following an upstream transmission, the subscriber waits a predetermined period for a message receipt acknowledgment from the headend. Failure to receive this acknowledgment results in an upstream retransmission by the subscriber at a randomly selected time within a transmission window, the length of which is a function of the upstream message traffic load. The transmission window is initially short to permit rapid retransmissions upstream in order to avoid interfering noise bursts of short duration. The upstream transmission window is then increased in length to a maximum value to string out upstream transmissions during a peak access period for reducing upstream message collisions. Following upstream transmissions during the maximum transmission window, the window is then reduced in length to accommodate reduced upstream traffic following successful upstream communication by the majority of subscribers. This upstream transmission distribution arrangement improves subscriber headend access, namely system throughput, by increasing the transmission window during periods of peak access and shortening the window length following peak access periods in order to reduce the time required for a successful upstream transmission.
Abstract:
The dangers inherent in the failure of available sensors to protect against explosions of the tanks of oil filled transformers has been found to be due in part to failures of such sensors to compensate for the fact that the temperature-pressure relationship in tanks of oil filled transformers does not necessarily follow a single valued constant volume version of Boyle's Law. The construction of the apparatus is readily adaptable to pressure only or temperature only sensing, to contact make or break operation either inside or outside of the tank. Further difficulties arise particularly in stiff systems from failure of available protective systems to respond in a manner to prevent explosions in spite of a warning that conditions have reached the danger point. These dangers are further overcome by the use of a sensor which senses both temperture and pressure in the system to short circuit the high-voltage input conductor to the transformer to ground whereby a current limiting fuse or other overcurrent device is quickly opened thus causing the protective device immediately ahead of the transformer to clear the fault and prevent explosion of the transformer.
Abstract:
A protection monitoring system is provided that includes a protection fault handler. The protection fault handler includes a protection fault indicator. The protection fault handler is configured to activate the protection fault indicator upon indication of a protection fault signal. Moreover, the protection fault signal is indicative of a critical fault which has occurred in a protection system monitored by the protection monitoring system. The protection monitoring system also includes a user inhibit handler. The user inhibit handler includes a user inhibit indicator. Moreover, the user inhibit handler is configured to activate the user inhibit indicator upon indication of a user inhibit signal. Furthermore, the user inhibit signal is indicative of a user-enabled alarm inhibit or a user-enabled bypass.