Abstract:
A power device includes one or more electrical components, the electrical components including one or more physical attribute. The power device includes one or more sensors configured to monitor the attribute(s). The power device includes a non-transitory computer-readable storage medium including one or more alerting rule. The power device includes one or more processors configured for retrieving the one or more alerting rule from the storage medium. The processors are configured for monitoring one or more sensor value from the sensor(s), wherein the sensor values are associated with the attribute(s). The processors are configured for evaluating the at least one alerting rule during the monitoring, and when the one or more alerting rule results in a pending failure condition, sending a notification to a user.
Abstract:
A method for analyzing effects of electrical perturbations on equipment in an electrical system includes processing energy-related signals from at least one intelligent electronic device in the electrical system to identify an electrical perturbation in the electrical system. An end time of the electrical perturbation may be determined, and electrical measurement data from prior to, during and/or after the end time of the electrical perturbation may be analyzed to identify and quantify the effects of the electrical perturbation on equipment in the electrical system. The effects may include, for example, equipment restarts/re-energizations due to the electrical perturbation. One or more actions may be taken or performed to reduce the effects of the electrical perturbation and extend the life of the equipment. The actions may include, for example, at least one of communicating the equipment restarts/re-energizations and controlling at least one component in the electrical system.
Abstract:
A power distribution system can include a controller and a set of power-using devices. Each power-using device in the set can include a sensor configured to measure a parameter and transmit a sensor signal representing the parameter to the controller, and the controller can respond to the transmitted sensor signal.
Abstract:
This abnormality detection method for a single-phase AC input voltage is executed by a control unit having a function of a phase locked loop, and includes: sequentially generating a simulated voltage waveform with a phase synchronized with the input voltage, by using the phase locked loop; and within a period until a next update of the generated simulated voltage waveform, comparing the instantaneous value of the input voltage with the simulated voltage waveform, and when the instantaneous value of the input voltage changes from a state of being along the simulated voltage waveform to a state of not being along the simulated voltage waveform, determining that the input voltage is abnormal.
Abstract:
An undervoltage protection circuit and an overvoltage protection circuit include a first comparator and a second comparator. The first comparator has a first input terminal, a second input terminal, and a first output terminal. The second comparator has a third input terminal, a fourth input terminal, and a second output terminal. The third input terminal receives a reference voltage and the fourth input terminal receives a first feedback voltage. The first and the second output terminals are coupled with a logic device. The first feedback voltage is converted to a second feedback voltage by the delay circuit and the voltage level shifter. The first comparator outputs a detection enabling voltage for undervoltage/overvoltage detection when the first feedback voltage crosses the second feedback voltage. The logic device outputs a protection voltage level undervoltage/overvoltage protection when the first feedback voltage crosses the reference voltage.
Abstract:
A protection device comprises a first substrate, a second substrate, a fusible element and a heating element. The first substrate comprises a first surface, and the second substrate comprises a second surface facing the first surface. The fusible element is disposed on the first surface of the first substrate, and the heating element is disposed on the second surface of the second substrate and is disposed above the fusible element. When over-voltage or over-temperature occurs, the heating element heats up to blow the fusible element and thereby providing over-voltage and over-temperature protection.
Abstract:
The present invention is directed towards a serially connected micro-inverter (SCMI) system comprising a plurality of power sources for producing DC power, a plurality of micro-inverters, where each micro-inverter is coupled to at least one power source of the plurality of power sources, for converting the DC power into AC power, an AC bus for coupling the plurality of micro-inverters in series to form a string and for coupling the AC power an AC line; and a controller, coupled to the string, for measuring an output signal of one or more strings of series coupled micro-inverters, comparing the measured output signal to a desired signal for the string; and adjusting a phase angle of an output from each micro-inverter in the one or more strings until a difference between the measured output signal and the desired signal is less than a predetermined threshold value.
Abstract:
An illustrative device includes a first silicon-controlled rectifier (SCR) and a second silicon-controlled rectifier (SCR) connected in anti-parallel and a first commutation module, which includes a first voltage source, a first diode, and a first self-commutating semiconductor switch. The device also includes a second commutation module including a second voltage source, a second diode, and a second self-commutating semiconductor switch. The first voltage source, the first diode, and the first self-commutating semiconductor switch of the first commutation module are connected in series. The second voltage source, the second diode, and the second self-commutating semiconductor switch of the second commutation module are connected in series. The first SCR, the second SCR, the first commutation module, and the second commutation module are connected in parallel. The commutation modules are configured to apply reverse bias voltages to the first and second SCRs to turn off the SCRs.
Abstract:
A wind turbine generator 1 is connected to a section 2 of an electricity grid 3 via a converter 4, which converts the ac output power from the generator into three-phase electric power at the voltage and frequency of the grid 3. The converter 4 comprises silicon carbide transistors which act as ON-OFF switches which are controlled so as to create a voltage profile which is the same as that of the grid voltage. Each grid section 2, 2′ has a respective circuit breaker 10, 10′ which disconnects the associated section from the remainder of the grid 3 in the event of an abnormally high current. The converter 2 includes a fault detector 11 arranged to detect grid faults, such as an abnormally low voltage level which, in response, generates an alarm signal which causes a high-level transient current to be supplied to the grid 3 sufficient to trip the circuit breaker 10′ so as to disconnect the faulty section of the grid. By using silicon carbide transistors, which can withstand high operating temperatures, a higher-level current can be generated than would be the case with converters using conventional silicon transistors.
Abstract:
Methods and circuits for undiscoverable physical chip identification are disclosed. Embodiments of the present invention provide an intrinsic bit element that comprises two transistors. The two transistors form a pair in which one transistor has a wide variability in threshold voltage and the other transistor has a narrow variability in threshold voltage. The wide variability is achieved by making a transistor with a smaller width and length than the other transistor in the pair. The variation of the threshold voltage of the wide variability transistor means that in the case of copies of intrinsic bit elements being made, some of the “copied” wide variability transistors will have significantly different threshold voltages, causing some of the intrinsic bit elements of a copied chip to read differently than in the original chip from which they were copied.