Abstract:
A gas laser apparatus according to an aspect of the present disclosure includes a main discharge circuit that supplies main discharge voltage that causes main discharge to a pair of main discharge electrodes, and a pre-ionization circuit that supplies pre-ionization voltage that causes corona discharge to a pre-ionization electrode. The main discharge circuit includes a step-up pulse transformer, a main capacitor and a switch connected to a primary side of the step-up pulse transformer, a first power source that charges the main capacitor, a first capacitor connected in parallel to a secondary side of the step-up pulse transformer, a first magnetic switch connected to the first capacitor, and a peaking capacitor connected in parallel to the first capacitor through the first magnetic switch and to the main discharge electrodes. An interval between start timings of the corona discharge and the main discharge is 30 ns to 60 ns inclusive.
Abstract:
A compact, high repetition rate, extreme ultraviolet/soft x-ray laser and method for generating such radiation are described. Excitation of the gaseous or vaporous lasing medium is achieved by discharging energy stored in a solid-dielectric capacitive device through a capillary channel containing the medium. By reducing the inductance of the discharge apparatus, excitation of the laser medium can be achieved without the use of Marx generators. Neon-like Ar atom laser pulses at 46.9 nm having energies of about 13 μJ are generated at repetition rates up to 12 Hz. Between 2 and 3×104 laser shots can be generated using a single capillary. Such a source of intense, short-wavelength radiation can be used for applications which include surface characterization of materials, high resolution imaging and printing, photochemistry and photophysics, laser ablation, characterization of x-ray optics, and dense plasma diagnostics.
Abstract:
A method and devices for preionizing the main discharge gas volume of a gas discharge laser are described. The method and devices provide a preionizing discharge to the main gas discharge volume from above or below the main gas discharge volume. In combination with a shielding arrangement which reduces the spread of the preionization discharge other than to the main gas discharge volume, the exposure of other laser components and gas volumes to said preionization discharge is thereby minimized.
Abstract:
An ignitor for a preionizing means of an excimer laser has an electrically conductive core which projects into the gas space of the laser and which is surrounded by a jacket of a fluoroplastic. The jacket is brought into sealing engagement with the wall of the laser gas space by means of a pressure sleeve via mating conical surfaces.
Abstract:
A longitudinal-discharge-pulse laser has two coaxial sections in the form of glass tubes joined together by a grounded central electrode and terminated by two outer electrodes. Each glass tube carries on its outer surface a multiplicity of metal rings connected in parallel, via a step-up transformer, to the anode of a first thyratron for energization with a steep negative pulse to generate a corona effect for the preionization of a gas mixture in the tubes on command of a pulse-cadence generator. This generator also controls a second thyratron, with a predetermined delay, which applies negative trigger pulses to the two outer electrodes for initiating a pumping discharge of the laser.
Abstract:
A gas laser generating device of the longitudinal gas flow type having at least two glow discharge tubes, each of which has positive and negative electrodes, electric insulating tubes which are inserted between the two glow discharge tubes in order to provide insulation therebetween, and mirrors which are positioned at the ends of the two glow discharge tubes. In the glow discharge tubes, gas is excited to generate gas lasing and this gas lasing is amplified by the reflections of the mirros. Also, there are further provided triggering electrodes near either the negative or positive electrodes of the glow discharge tubes, respectively, which triggering electrodes are connected to the positive electrodes through triggering resistors, respectively.
Abstract:
A gaseous laser of the type having a coaxial cold cathode constructed to minimize sputtering of the windows of the laser. The laser is preferably an argon or xenon-ion laser with an indium cathode disposed at one end of the insulating envelope and surrounding an insulating tube which extends in a direction toward the anode to minimize sputtering. Alternatively, both cathode and anode may consist of indium and may be disposed on the outside of the end portions of the laser envelope with the end portions extending beyond the electrodes and towards each other.
Abstract:
A slab gas laser has a live slab electrode and a ground slab electrode with the live slab electrode and the ground slab electrode defining a primary gas discharge chamber therebetween. The live electrode is in electrical communication with a first AC power supply to provide a first excitation signal. A pre-ionizing cell comprises a live electrode and a ground electrode defining a pre-ionizing gas discharge chamber therebetween. The live electrode is in electrical communication with a second AC power supply distinct from the first AC power supply to provide a second excitation signal delivering a discharge of electrons from the pre-ionizing gas discharge chamber. The pre-ionizing and the primary gas discharge chambers are aligned such that the pre-ionizing cell is oriented with the edges of its live and ground electrodes adjacent and substantially parallel to edges of the ground slab and live slab electrodes, respectively.
Abstract:
Controlled avalanche driver circuits and apparatuses for gas lasers. One embodiment typically delivers short, rapid, high voltage ionizing pulses in combination with an electric field whose magnitude is too low to sustain a normal glow discharge. The plasma is typically impedance matched with the pulse-forming network. Pre-ionization pulses may be generated. The circuits enable very high power, stable lasers.