Abstract:
The purpose of the present invention is to provide a thermoelectric conversion element capable of achieving high-efficiency thermoelectric conversion using comparatively inexpensive materials. The present invention is accordingly provided with: a magnetic body layer, an electromotive film for generating electromotive force, and two terminal parts formed so that each is in contact with the electromotive film at two locations having different potentials due to the electromotive force. The electromotive film is formed on the magnetic body layer, said film comprising a Ni-containing magnetic alloy. Said film is doped with a 5d transition metal element, and Ni is the matrix.
Abstract:
A wasted heat harvesting device for harvesting electricity including a switching device configured to convey a magnetic field from a first region to at least a second region when the temperature of the switching device crosses a predetermined temperature.
Abstract:
A method for producing a micro system, said method comprising: providing a substrate (2) made of aluminum oxide; producing a thin film (6) on the substrate (2) by depositing lead zirconate titanate onto the substrate (2) with a thermal deposition method such that the lead zirconate titanate in the thin film (6) is self-polarized and is present predominantly in the rhombohedral phase; and cooling down the substrate (2) together with the thin film (6).
Abstract:
A thermal oscillator (10) for creating an oscillating heat flux from a stationary spatial thermal gradient between a warm reservoir (20) and a cold reservoir (30) is provided. The thermal oscillator (10) includes a thermal conductor (11) which is connectable to the warm reservoir (20) or to the cold reservoir (30) and configured to conduct a heat flux from the warm reservoir (20) towards the cold reservoir (30), and a thermal switch (12) coupled to the thermal conductor (11) for receiving the heat flux and having a certain difference between two states (S1, S2) of thermal conductance for providing thermal relaxation oscillations such that the oscillating heat flux is created from the received heat flux.
Abstract:
A thermoelectric conversion element includes: a magnetic layer; a conductive film formed on the magnetic layer and configured to generate an electromotive force in an in-plane direction by inverse spin-Hall effect; and two terminal sections formed to contact with the conductive film at two portions whose potentials are different to each other by the electromotive force. Each of the two terminal sections contacts with the conductive film in a continuous or discrete contact surface. A longitudinal direction of a minimum rectangle which encompasses the continuous or discrete contact surface of each of the two terminal sections intersects with the direction of the electromotive force.
Abstract:
An object of the present invention is to provide a low-cost thermoelectric converter element having high productivity and excellent conversion efficiency. A thermoelectric converter element according to the present invention includes a substrate 4, a magnetic film 2 provided on the substrate 4 with a certain magnetization direction A and formed of a polycrystalline magnetically insulating material, and an electrode 3 provided on the magnetic film 2 with a material exhibiting a spin-orbit interaction. When a temperature gradient is applied to the magnetic film 2, a spin current is generated so as to flow from the magnetic film 2 toward the electrode 3. A current I is generated in a direction perpendicular to the magnetization direction A of the magnetic film 2 by the inverse spin Hall effect in the electrode 3.
Abstract:
A thermo-magnetic power generation system includes a thermo-magnetic power generation device, a first circulating device, and a second circulating device. The first circulating device and the second circulating device are connected to the thermo-magnetic power generation device. The liquid is heated by the first circulating device and cooled by the second circulating device. The heated liquid and the cooled liquid transmitted to the thermo-magnetic element are recycled by the first circulating device and the second circulating device.
Abstract:
An apparatus includes a slider including an air bearing surface and a waveguide configured to receive light from a light source, a sensor positioned to receive a portion of light emitted by the light source prior to the light exiting the slider at the air bearing surface, and a controller controlling the light source power in response to a characteristic of the sensor.
Abstract:
A generator device for converting thermal energy to electric energy. A magnetic circuit includes at least a portion made of a magnetic material. A temperature-varying device varies the temperature in the portion made of the magnetic material alternately above and below a phase transition temperature of the magnetic material to thereby vary the reluctance of the magnetic circuit. A coil is arranged around the magnetic circuit, in which electric energy is induced in response to a varying magnetic flux in the magnetic circuit. A magnetic flux generator generates magnetic flux in the magnetic circuit. A controllable electric circuit device is connected to the coil and a control device controls the controllable electric circuit device.
Abstract:
A special thermo magnetic motor which is an electromagnetic heat engine used for directly converting power between heat and electrical forms using magnetism. It is comprised of a unique combination of a base support, a heating system to heat the magnetic wafers to the Curie temperature; a magnet system with a base and shorting bar; a rotatable disk assembly with the magnetic wafers and a support shaft/transfer means; and an output to an output means to the using device. It provides significant benefits compared to prior art devices and is used for driving various other devices.