Abstract:
A resistor bypass circuit for a series lighting circuit includes a plurality of serially connected light sources and a bypass resistor being connected in parallel with at least one of the respective light sources, each respective light source being low wattage and being capable operating on a one hundred percent duty cycle as desired.
Abstract:
A resistor bypass circuit for a series lighting circuit includes a plurality of serially connected light sources and a bypass resistor being connected in parallel with at least one of the respective light sources, each respective light source being low wattage and being capable operating on a one hundred percent duty cycle as desired.
Abstract:
Method for machining a lamp and a lamp machined by the method, including a lamp bulb, in which an incandescent element with power supply is housed and which defines a chamber for a filling gas which is tightly sealed by a compression seal. According to the invention, after filling, a part of the lamp bulb is heated by introduction of heat, preferably by laser and moulded or refused in order to alter the outer contour of the lamp bulb or tempered.
Abstract:
An improved support is provided for locating a lamp filament axially within a lamp sleeve. The illustrated support is a spiral coil that includes a small diameter center portion that makes contact with the filament. On either side of the filament-contacting portion, the coil opens up to larger diameters for contacting the inner wall of the quartz sleeve within which the filament is housed. The support thus appears H-shaped when viewed from the side. A lamp filament is also provided with expansion compensation sections at either end of a central section. The filament wire in the compensation sections is wound into coils having a greater diameter and also a greater spacing between windings, as compared to coil in the central section. The expansion compensation sections are preferably capable of compressing and thereby absorbing thermal expansion of the filament during operation, without shorting the filament across adjacent windings.
Abstract:
Manufacturing equipment and manufacturing process steps that improve upon prior art processes for the manufacturing of filament tube and arc tube light sources, their components and subassemblies, and lamps employing said light sources. A double ended, tipless filament tube or arc tube light source incorporates a drawn-down tubular body, and one piece foliated leads with spurs for process handling and for spudding into a filament with stretched-out legs. Bugled ends on the body provide a novel cutoff means, facilitate a flush-fill finishing process, and enhance mounting and support of the light sources in lamps. The foliated leads are made from a continuous length of wire in a process including foil hammering and two-bath AC electrochemical etching. Cost-reduced light source and lamp production enables affordable household consumer lamps, even when containing two series-connected halogen filament tubes. Safety benefits ensue from series connection, especially in combination with disclosed body and filament constructions.
Abstract:
An improved support is provided for locating a lamp filament axially within a lamp sleeve. The illustrated support is a spiral coil that includes a small diameter center portion that makes contact with the filament. On either side of the filament-contacting portion, the coil opens up to larger diameters for contacting the inner wall of the quartz sleeve within which the filament is housed. The support thus appears H-shaped when viewed from the side. A lamp filament is also provided with expansion compensation sections at either end of a central section. The filament wire in the compensation sections is wound into coils having a greater diameter and also a greater spacing between windings, as compared to coil in the central section. The expansion compensation sections are preferably capable of compressing and thereby absorbing thermal expansion of the filament during operation, without shorting the filament across adjacent windings.
Abstract:
This invention is related to a halo bulb, which consists of a bulb body, a filament and a conducting wire. The filament in the bulb body was conducted out from the tail of the bulb body by the conducting wire. The head of the bulb body is a solid, the outside is a concave circular arc and the inside is a triangle. The filament is connected to the conducting wire in a straight line. The bulb of the present invention has a higher luminosity and can use fully the light emitted from the filament. Because of the special structure in the bulb body, the light beam emitted by the bulb forms beautiful patterns. For example, it can form directly eye-shaped or solar eclipse-like aureola halo patterns. The invention opened the market of Christmas bulb and bulb string and changed the simple condition of Christmas bulb. The bulb of the present invention, with the beam and halo background patterns, can provide better light and vision effect.
Abstract:
An efficient and safe lamp with a tungsten halogen capsule may be formed by using a two stage pyrophoric fuse as part of the electrical path to the capsule. The thin walled lamp with tungsten halogen capsule and two stage pyrophoric fuse yields a more efficient, less expensive and yet still safe tungsten halogen lamp. The thin walled lamp with tungsten halogen capsule and pyrophoric fuse provides a safe, thin walled outer envelope tungsten halogen lamp, provide a lamp with an oxygen sensitive fuse operable in low wattage lamps, provides a method manufacturing a pyrophoric fuse sensitive to moderate temperatures, provides an inexpensive and practical, low wattage, thin walled tungsten halogen lamp with a pyrophoric fuse.
Abstract:
To provide a halogen incandescent bulb with controlled variation in wall ckness of the bulb, a bulb tube (20) first has a cup region (26) formed thereon. The cup region, by radial application of force, for example by rollers (22), is constricted, and the constriction then pulled to form a small, closed projecting tip (19). Mold jaws (27) then mold the shape of the bulb; the mold jaws are formed with a cavity (29') to receive the projecting tip (19) which, then, has the end cut off to provide an attachment cannula (30) for the pumping tube (32). The pumping tube is melted on the nipple (29) of the cup (26) of the bulb. A filament mount (8) with filaments (9) is then introduced, and pinch jaws (35) pinch-seal the filament mount in the bulb and finish-shape the bulb. The bulb can then be flushed, evacuated, and filled with the requisite halogen containing fill through the pumping tube (32), which then is tipped off.
Abstract:
A display has a matrix array of cells formed in a silicon plate and each containing a tungsten strip filament. The cells are filled with a halogen gas and are sealed by a double-glazed window with an infra-red reflecting filter to reflect heat back into the cell while allowing the transmission of visible radiation. The rear of the plate is treated to make it microporous and reduce its thermal conductivity.