摘要:
The invention relates to a ceramic metal halide lamp having a ceramic discharge vessel, characterized in that the discharge vessel encloses a discharge space which comprises an electrode, which electrode is electrically connected to a conductor outside the discharge vessel by means of a feedthrough comprising an Ir wire, the feedthrough being gas-tight mounted in an extended plug, also referred to as vup, of the discharge vessel, the feedthrough comprising an electrode—feedthrough combination made up of at least three parts with a W or W—Re rod or a Mo or Mo alloy wire extending out of the vup for burner mounting, which W or W—Re or MO or MO alloy wire is welded to the Ir wire.
摘要:
A method for producing a molybdenum film for lamp construction is provided. The method may include roughening at least a part of the surface of the molybdenum film by sandblasting with a sandblasting means, wherein the sandblasting means contains at least one of aluminum oxide and quartz sand as well as at least one further component.
摘要:
The invention relates to a metal halide lamp comprising a ceramic discharge vessel (21), characterized in that a molybdenum leadthrough (11) is connected to a cermet stopper (15) via an intermetal interface gradient (20).
摘要:
Ion accelerating devices including connection mechanisms with integrated shielding electrode and related methods are disclosed. According to an embodiment, an ion accelerating device of an ion implantation system comprises: a first element; a first connection system within the first element, the first connection system including a first connector and a first encapsulated shielding electrode around the first connector; and a second connection system within a second element other than the first element, the second connection system being coupled to the first connector; wherein the first encapsulated shielding electrode includes a first shielding portion adjacent to a first interface surface of the first element where the second connection system interfaces with the first element, in a cross-sectional view, the first shielding portion being substantially U-shaped.
摘要:
An electric lamp has a lamp vessel accommodating an electric element. The element is connected to current conductors including molybdenum portions which have a coating of material chosen from the group of chromium-manganese, chromium-cobalt, chromium-iron and chromium-boron alloys as a protection against oxidation.
摘要:
In order to ensure hermeticity of a hermetic container and to suppress occurrence of electrical leakage, a display device is provided with a faceplate including an anode to be supplied with an externally-supplied electric potential, a rear plate arranged facing the faceplate at a predetermined spacing therefrom, a metal pin for supplying the electric potential to the anode from outside of the rear plate through a penetration hole in the rear plate, wherein the penetration hole includes the metal pin by insertion. The metal pin includes an axis portion disposed in the penetration hole and a flange portion which is integral with this axis portion and which is located adjacent an opening end of the penetration hole. The flange portion is joined to the rear plate for hermetically sealing the penetration hole.
摘要:
In order to ensure hermeticity of a hermetic container and to suppress occurrence of electrical leakage, a display device is provided with a faceplate including an anode to be supplied with an externally-supplied electric potential, a rear plate arranged facing the faceplate at a predetermined spacing therefrom, a metal pin for supplying the electric potential to the anode from outside of the rear plate through a penetration hole in the rear plate, wherein the penetration hole includes the metal pin by insertion. The metal pin includes an axis portion disposed in the penetration hole and a flange portion which is integral with this axis portion and which is located adjacent an opening end of the penetration hole. The flange portion is joined to the rear plate for hermetically sealing the penetration hole.
摘要:
A metal halide lamp having a ceramic discharge vessel with two ends which are closed off by stoppers, and an electrically conductive leadthrough guided through this stopper. An electrode with a shank secured to the leadthrough, which electrode projects into the interior of the discharge vessel. The leadthrough and electrode referred to as an electrode system, comprises two components, which are designed as pins of different diameter, the larger component being a niobium pin and the smaller component, which adjoins it on the inner, discharge side, being a pin made from molybdenum or tungsten which is fitted in a bore in the niobium pin. The ratio of the diameter of the smaller component to that of the Nb pin is between 30 and 65%, and the pin which has been fitted in is secured in the bore by a mechanical pressing operation.
摘要:
To form side tubes with adequate resistance to pressure, and to provide a short-arc, ultra-high-pressure discharge lamp having such side tubes, and to provide a method of manufacturing such a lamp, a short-arc, ultra-high-pressure discharge lamp (1) has a luminescent tube (10) within which a pair of electrodes (2,2) face each other, and side tubes (11) that extend from opposite sides of the luminescent tube and in which a portion of the electrodes is sealed and in which a small space (B) is formed to enable the electrodes (2) to expand and contract freely without compression along their axes due to a difference in the indices of expansion of the materials that make up the electrodes (2) and the side tubes (11).
摘要:
An SiO2-glass bulb with at least one current lead-in made of a gas-tight composite material, such that the composite material consists of a noble metal with a melting point >1,700null C. and SiO2 and is at least partially coated with a layer of SiO2. The noble metal and the SiO2 are homogeneously distributed in the composite material. The noble metal content of the composite material is null10 vol. % to null50 vol. %, and the SiO2 coating covers the composite material at least in the region of the connection with the SiO2-glass bulb.