Abstract:
A sputtering target includes an indium cerium zinc oxide represented by In2CexZnO4+2x, wherein x=0.5˜2. A relative density of the sputtering target is larger than or equal to 90%. A bulk resistance of the sputtering target in a range from about 10−2 Ωcm to about 10 Ωcm. A weight percentage of crystalline In2CexZnO4+2x in the sputtering target is larger than 80%.
Abstract:
A drum sputtering device that can uniformly deposit target atoms on all over particles is provided. The drum sputtering device includes a vacuum container 2 that contains particles, a tubular drum 10 that is arranged inside the vacuum container 2 and at least one end face 10c of which is open, and a sputtering target 16 that is arranged inside the drum 10. With a supporting arm 11, a drive motor 12 for rotation, a drive motor 13 for swing, a first gear member 14, and a second gear member 15, the drum can be rotated around the axis of the drum 10 and the drum 10 can be swung so that one end portion 10e and the other end portion 10f in the axial direction of the drum 10 are relatively vertically switched.
Abstract:
A method and apparatus for forming a thin film of a copper indium gallium selenide (CIGS)-type material are disclosed. The method includes providing first and second targets in a common sputtering chamber. The first target includes a source of CIGS material, such as an approximately stoichiometric polycrystalline CIGS material, and the second target includes a chalcogen, such as selenium, sulfur, tellurium, or a combination of these elements. The second target provides an excess of chalcogen in the chamber. This can compensate, at least in part, for the loss of chalcogen from the CIGS-source in the first target, resulting in a thin film with a controlled stoichiometry which provides effective light absorption when used in a solar cell.
Abstract:
Described are methods of fabricating lithium sputter targets, lithium sputter targets, associated handling apparatus, and sputter methods including lithium targets. Various embodiments address adhesion of the lithium metal target to a support structure, avoiding and/or removing passivating coatings formed on the lithium target, uniformity of the lithium target as well as efficient cooling of lithium during sputtering. Target configurations used to compensate for non-uniformities in sputter plasma are described. Modular format lithium tiles and methods of fabrication are described. Rotary lithium sputter targets are also described.
Abstract:
Described are methods of fabricating lithium sputter targets, lithium sputter targets, associated handling apparatus, and sputter methods including lithium targets. Various embodiments address adhesion of the lithium metal target to a support structure, avoiding and/or removing passivating coatings formed on the lithium target, uniformity of the lithium target as well as efficient cooling of lithium during sputtering. Target configurations used to compensate for non-uniformities in sputter plasma are described. Modular format lithium tiles and methods of fabrication are described. Rotary lithium sputter targets are also described.
Abstract:
Evaporation source, in particular for use in a sputtering process or in a vacuum arc evaporation process, preferably a cathode vacuum arc evaporation process. The evaporation source includes an inner base body which is arranged in an outer carrier body and which is arranged with respect to the outer carrier body such that a cooling space in flow communication with an inlet and an outlet is formed between the base body and the carrier body. In accordance with the invention, the cooling space includes an inflow space and an outflow space, and the inflow space is in flow communication with the outflow space via an overflow connection for the cooling of the evaporation source such that a cooling fluid can be conveyed from the inlet via the inflow space the overflow connection and the outflow space to the outlet.
Abstract:
A method, comprising: generating a vapor of a material from a source of said material comprising a plurality of separate solid pieces of said material supported on a surface of a base in a configuration in which said plurality of solid pieces of said target material are arranged at two or more levels to cover the whole of said surface of said base while providing a gap between adjacent pieces at the same level; and depositing said material from said vapor onto a substrate.
Abstract:
One embodiment of the present invention provides a sputtering system for large-scale fabrication of solar cells. The sputtering system includes a reaction chamber, a rotary target situated inside the reaction chamber which is capable of rotating about a longitudinal axis, and an RF power source coupled to at least one end of the rotary target to enable RF sputtering. The length of the rotary target is between 0.5 and 5 meters.
Abstract:
A processing system may include a target having a central axis normal thereto; a source distribution plate having a target facing side opposing a backside of the target, wherein the source distribution plate includes a plurality of first features such that a first distance of a first radial RF distribution path along a given first diameter is about equal to a second distance of an opposing second radial RF distribution path along the given first diameter; and a ground plate opposing a target opposing side of the source distribution plate and having a plurality of second features disposed about the central axis and corresponding to the plurality of first features, wherein a third distance of a first radial RF return path along a given second diameter is about equal to a fourth distance of an opposing second radial RF return path along the given second diameter.
Abstract:
The present invention provides an indium target and manufacturing method thereof, where deposition rate is high, initial discharge voltage is low, and deposition rate and discharge voltage, from the start of sputtering to the end of sputtering, are stable. In the indium target, an aspect ratio (length of longer direction/length of shorter direction) of crystal particle, observed from cross-section direction of the target, is 2.0 or less.