Abstract:
Compositions containing getter material and getter devices for which gettering activity can be activated at applied temperatures that are lower than those temperatures required for activating the getter material alone are disclosed. In one aspect, a getter composition that includes a getter component and an activator component is provided. The getter component is selected from the group consisting of evaporable and non-evaporable getter materials. The activator component is effective to heat said getter material to a temperature greater than about 500.degree. C. when said activator material is heated to a temperature of between about 280.degree. C. and about 500.degree. C. In some embodiments, the activator component is effective to bring the temperature of the getter material to greater than about 1,000.degree. C. These materials can be used in devices and locations for which low applied activation temperatures are required.
Abstract:
An airtight container includes a first substrate and a second substrate facing the first substrate and joined thereto using joint members. The first substrate has a groove extending on a surface of the first substrate and a wiring provided along a direction of the extended groove. The wiring includes a section inside and along the groove and a section outside the groove and extending from the section inside the groove, and the first substrate includes joint members provided on and across the section of the wiring outside the groove. In addition, a frame is joined on the second substrate by second joint members and is interposed between the first substrate and the second substrate. The frame is joined to the first substrate by the first joint members.
Abstract:
An ion source has an arc chamber having an arc chamber body. An electrode extends into an interior region of the arc chamber body, and a cathode shield has a body that is cylindrical having an axial hole. The axial hole is configured to pass the electrode therethrough. First and second ends of the body have respective first and second gas conductance limiters. The first gas conductance limiter extends from an outer diameter of the body and has a U-shaped lip. The second gas conductance limiter has a recess for a seal to protect the seal from corrosive gases and maintain an integrity of the seal. A gas source introduces a gas to the arc chamber body. A liner has an opening configured to pass the cathode shield therethrough, where the liner has a recess. A gap is defined between the U-shaped lip and the liner, wherein the U-shaped lip reduces a conductance of gas into the gap and the recess further reduces conductance of gas into the region.
Abstract:
It is an object of the present invention to provide an improved structure having an adequate strength to satisfy a requirement of making a thin electro-optical panel. The electro-optical panel forms a sealing area having an electro-optical functional section between the support substrate and the sealing member. The support substrate has a lead-out area containing an area for forming lead-out wiring extending from the sealing area and for connecting or mounting the driving means (IC chip, flexible substrate and the like) to the lead-out wiring. The sealing member has protruding reinforcement sections protruding from the sealing area S on to the lead-out area. The support substrate and the sealing member are bonded together through an adhesive layer, thereby forming an adhesive area surrounding the sealing member. It is another object of the present invention to provide an improved process of producing a plurality of self-emission panels formed by cutting a mother panel into a plurality of unit panels, to prevent lead-out wiring portions from being wounded during the cutting process, thereby improving the yield of production. A further object of the invention is to improve the efficiency of inspection step, thereby improving the productivity of manufacturing process. A mother self-emission panel comprises a mother support substrate having formed thereon a plurality of self-emission sections, and a mother sealing member having arranged thereon a plurality of sealing sections corresponding to the plurality of self-emission sections. When the mother support substrate and the mother sealing member are bonded together, a plurality of sealing areas will be formed to seal the plurality of self-emission sections corresponding to the plurality of sealing sections. The mother support substrate has a plurality of lead-out areas having formed thereon a plurality of lead-out wiring portions extending from the plurality of self-emission sections to the outsides of the sealing areas. The mother sealing member has a plurality of hole processing portions for exposing the lead-out wiring portions.
Abstract:
Compositions containing getter material and getter devices for which gettering activity can be activated to applied temperatures that are lower than those temperatures required for activating the getter material alone are disclosed. In one aspect, a getter composition that includes a getter component and an activator component is provided. The getter component is selected from the group consisting of evaporable and non-evaporable getter materials. The activator component is effective to heat said getter material to a temperature greater than about 500° C. when said activator material is heated to a temperature of between about 280° C. and about 500° C. In some embodiments, the activator component is effective to bring the temperature of the getter material to greater than about 1,000° C. These materials can be used in devices and locations for which low applied activation temperatures are required.
Abstract:
An ion source has an arc chamber having an arc chamber body. An electrode extends into an interior region of the arc chamber body, and a cathode shield has a body that is cylindrical having an axial hole. The axial hole is configured to pass the electrode therethrough. First and second ends of the body have respective first and second gas conductance limiters. The first gas conductance limiter extends from an outer diameter of the body and has a U-shaped lip. The second gas conductance limiter has a recess for a seal to protect the seal from corrosive gases and maintain an integrity of the seal. A gas source introduces a gas to the arc chamber body. A liner has an opening configured to pass the cathode shield therethrough, where the liner has a recess. A gap is defined between the U-shaped lip and the liner, wherein the U-shaped lip reduces a conductance of gas into the gap and the recess further reduces conductance of gas into the region.
Abstract:
To realize airtight joining on wirings, even in a case of arranging the wirings within grooves formed on a substrate surface, the wirings include a section arranged inside the grooves and a section arranged outside the grooves so as to extend over both sections. The first substrate and the second substrate are jointed through a joint member provided on the wirings outside the grooves so as to intersect with the wirings outside the grooves.
Abstract:
Compositions containing getter material and getter devices for which gettering activity can be activated at applied temperatures that are lower than those temperatures required for activating the getter material alone are disclosed. In one aspect, a getter composition that includes a getter component and an activator component is provided. The getter component is selected from the group consisting of evaporable and non-evaporable getter materials. The activator component is effective to heat said getter material to a temperature greater than about 500° C. when said activator material is heated to a temperature of between about 280° C. and about 500° C. In some embodiments, the activator component is effective to bring the temperature of the getter material to greater than about 1,000° C. These materials can be used in devices and locations for which low applied activation temperatures are required.