Abstract:
A method and composition are disclosed for preventing uncontrolled exothermic reaction in the presence of a catalyst. A catalyst deployed as a finely divided powder which is attached to the surface of a low melting point wax or wax-like material which is utilized as a carrier for the catalyst. During operation should the catalyst overheat due to uncontrolled conditions brought about by a run-away reaction the heat of reaction melts the low melting point wax which would itself wet the surface of the catalyst and prevent further catalysis.
Abstract:
The present invention relates to a composition capable of hydrogen sorption in a closed container at low pressure, comprising an unsaturated organic substance and a hydrogenation catalyst. Said unsaturated organic substance is a compound having general formula A or A′, or a dimer or polymer thereof, or a copolymer wherein one of the structural units has the general formula A or A′: wherein R1, R2 and R3 are hydrogen or hydrocarbon moieties optionally comprising one or more heteroatoms, at least one among R1, R2 and R3 being chosen in the group of alkenyl, alkynyl, arylalkenyl and arylalkynyl moieties, optionally comprising one or more heteroatoms.
Abstract:
A method and composition are disclosed for preventing uncontrolled exothermic reaction in the presence of a catalyst. A catalyst deployed as a finely divided powder which is attached to the surface of a low melting point wax or wax-like material which is utilized as a carrier for the catalyst. During operation should the catalyst overheat due to uncontrolled conditions brought about by a run-away reaction the heat of reaction melts the low melting point wax which would itself wet the surface of the catalyst and prevent further catalysis.
Abstract:
Compositions containing getter material and getter devices for which gettering activity can be activated at applied temperatures that are lower than those temperatures required for activating the getter material alone are disclosed. In one aspect, a getter composition that includes a getter component and an activator component is provided. The getter component is selected from the group consisting of evaporable and non-evaporable getter materials. The activator component is effective to heat said getter material to a temperature greater than about 500° C. when said activator material is heated to a temperature of between about 280° C. and about 500° C. In some embodiments, the activator component is effective to bring the temperature of the getter material to greater than about 1,000° C. These materials can be used in devices and locations for which low applied activation temperatures are required.
Abstract:
An ion pump anode eliminates the intercellular spaces while maintaining an efficient cell shape in which the plasma sheath follows the contour of the cell wall. The cell are preferably quasi-cylindrical and can be manufactured by folding one or more metal strip into a corrugation and welding the strip to create separate cells. By eliminating the intercellular region, which support a high plasma density, the formation of dendrites under such a region is prevented and instabilities caused by those dendrites are eliminated.
Abstract:
There has been invented a codeposition process for fabricating hydrogen scavengers. First, a &pgr;-bonded allylic organometallic complex is prepared by reacting an allylic transition metal halide with an organic ligand complexed with an alkali metal; and then, in a second step, a vapor of the &pgr;-bonded allylic organometallic complex is combined with the vapor of an acetylenic compound, irradiated with UV light, and codeposited on a substrate.
Abstract:
A process is provided for the production of porous non-evaporable getter materials comprising at least one first element selected from Zr and Ti and at least one second element selected from V, Cr, Mn and Ni. The starting metal powders are produced by reduction of the corresponding oxides, with calcium hydride and the thus obtained powders are compacted and sintered at a value of pressure and temperature in a given range. The getter materials due to the production process, have a novel distribution of chemical composition through the getter body, resulting in an improved combination of mechanical and gas-sorption properties.
Abstract:
An evaporable getter device containing a mixture of nickel and BaAl4 is made to have a shorter barium evaporation time by using a mixture of nickel powders in which the particles of nickel have different morphologies and different specific areas.
Abstract:
Compositions containing getter material and getter devices for which gettering activity can be activated to applied temperatures that are lower than those temperatures required for activating the getter material alone are disclosed. In one aspect, a getter composition that includes a getter component and an activator component is provided. The getter component is selected from the group consisting of evaporable and non-evaporable getter materials. The activator component is effective to heat said getter material to a temperature greater than about 500° C. when said activator material is heated to a temperature of between about 280° C. and about 500° C. In some embodiments, the activator component is effective to bring the temperature of the getter material to greater than about 1,000° C. These materials can be used in devices and locations for which low applied activation temperatures are required.
Abstract:
A vacuum container for a field emission cathode device capable of attaining manufacturing of the field emission cathode device with increased efficiency and enhancing durability thereof. The vacuum container includes a cathode-side substrate on which field emission cathodes are formed and an anode-side substrate arranged so as to be spaced from each other at a predetermined distance in a direction in which electrons are emitted, resulting in a space being defined therebetween. A gas or hydrogen emission material is arranged at at least one position including a position which is defined in said space or an additional space contiguous to said space and is farthest from said evacuation section.