Abstract:
A discharge device of the invention includes multiple bonded ceramic layers with electrodes formed between the layers. It can be combined with the various MCIC technologies to produce myriad useful devices. Contacts are made to the electrodes, which may be grouped in different arrangements. The electrodes contact a hole through some or all of the ceramic layers to define a discharge cavity. Different groupings of the electrodes will produce different types of discharge. Alternating the electrodes in interdigitated pairs permits an arbitrary extension of the discharge cavity length. Having consecutive anodes or cathodes permits formation of regions where electrons may cool. Another device of the invention includes a multilayer ceramic structure having a hole formed in a least one outer layer through an electrode on the outer side of the layer and in contact with an electrode between two layers. A contact is formed to the electrode between layers through any remaining layers in the multilayer ceramic structure.
Abstract:
In order to optimize the so-called light-dark effect, i.e., the difference in ignition voltage between the first and second ignition after dark storage in gas-filled discharge paths, an additional component made of an oxide compound of cesium and a transition metal such as tungsten, chromium, niobium, vanadium or molybdenum is added in a quantity of 5 to 25% by weight to the activating compound which is comprised of several components. The other components of the activating compound include a barium compound and a transition metal in metallic form such as titanium, and an alkaline halide or an alkaline earth halide and/or sodium silicate and/or potassium silicate as a basic component.
Abstract:
The present invention discloses a method of producing a discharge display device which enables formation of a satisfactory LaB.sub.6 cathode without using a LaB.sub.6 paste containing a glass binder. The method of the present invention comprises the steps of applying a conductive paste containing a glass binder, temporarily drying said conductive paste to form a conductive paste layer, forming a LaB.sub.6 layer containing no glass binder on said conductive paste layer, burning said conductive paste layer and said LaB.sub.6 layer, at the same time, and activating said LaB.sub.6 layer after being burnt, and after an exhausting step by gas discharge with large current to form a LaB.sub.6 cathode.