Abstract:
A gas-filled discharge gap includes at least two electrodes and an electrode-activation mass that is arranged on at least one of the electrodes. The electrode-activation mass contains K2WO4.
Abstract translation:气体填充的放电间隙包括至少两个电极和布置在至少一个电极上的电极活化块。 电极活化块含有K 2 WO 4。
Abstract:
A surge arrester includes two side electrodes extending into an interior space formed by means of at least one insulating body and a central electrode. The end-side distance between the side electrodes is greater than the distances between a respective side electrode and the central electrode. The distance between the side electrodes is less than the distance between the end regions of the central electrode and a base of the side electrodes.
Abstract:
A gas-filled discharge gap includes at least two electrodes and an electrode-activation mass that is arranged on at least one of the electrodes. The electrode-activation mass contains K2WO4.
Abstract:
A surge arrester includes two side electrodes extending into an interior space formed by means of at least one insulating body and a central electrode. The end-side distance between the side electrodes is greater than the distances between a respective side electrode and the central electrode. The distance between the side electrodes is less than the distance between the end regions of the central electrode and a base of the side electrodes.
Abstract:
A heated hydrogen storage device for a plasma switch includes a ring-shaped holder element having an inwardly directed, ring-shaped shoulder that forms an opening. The device also includes a first and a second metal disk, with the first metal disk having a cut-out portion. A heating element is arranged between the first and second metal disks and is insulated therefrom. The heating element forms a turned heating track and has one end contacting the second metal disk and a second end extending outside through the cut-out portion of the first metal disk. The first metal disk and the heating element are stacked one above the another and rests on the ring-shaped shoulder of the ring-shaped holder element. The second metal disk is connected to the holder element and it covers the opening of the holder element. The second metal disk also fixes the first metal disk and the heating element in position.
Abstract:
Gas-filled discharge paths such as voltage surge protectors and spark gaps can have a low ignition delay in dark spaces when a special activating compound is used. To simplify the manufacture of such discharge paths, fully nickel-plated electrodes are used; in addition, nickel in a metallic form, in addition to titanium, is also added to the special activating compound.
Abstract:
In order to optimize the so-called light-dark effect, i.e., the difference in ignition voltage between the first and second ignition after dark storage in gas-filled discharge paths, an additional component made of an oxide compound of cesium and a transition metal such as tungsten, chromium, niobium, vanadium or molybdenum is added in a quantity of 5 to 25% by weight to the activating compound which is comprised of several components. The other components of the activating compound include a barium compound and a transition metal in metallic form such as titanium, and an alkaline halide or an alkaline earth halide and/or sodium silicate and/or potassium silicate as a basic component.
Abstract:
A gas-filled overvoltage arrester with an electrode activation compound. In order to ensure a high degree of adherence of the activation compound to the electrodes in a gas-filled hydrogen-containing overvoltage arrester, the activation compound comprises a first aluminum component, a second halide component, and a third dielectric or ferroelectric metal oxide component. These three components are present in the proportions of 50 to 70, 20 to 40, and 3 to 10 mol. %, respectively.