Abstract:
To provide a hologram recording composition that can further improve diffraction characteristics and transparency of a hologram. The present technology provides a hologram recording composition containing a heteropoly acid, a photopolymerizable monomer, a photopolymerization initiator, and a sensitizing dye having absorption in a visible light region in the presence of an acid. The present technology also provides a hologram recording medium including at least a photocurable resin layer containing a heteropoly acid, a photopolymerizable monomer, a photopolymerization initiator, and a sensitizing dye having absorption in a visible light region in the presence of an acid. Furthermore, the present technology also provides a diffraction optical element using the hologram recording medium. Moreover, the present technology also provides an optical device, an optical component, and an image display device using the diffraction optical element.
Abstract:
The present invention provides aromatic 4,6-bis-trichloromethyl-s-triazin-2-yl compounds of formula (I). Further subjects of the invention are a photopolymer formulation comprising a photopolymerizable component and at least one aromatic 4,6-bis-trichloromethyl-s-triazin-2-yl compound of formula (I) and a photopolymer comprising matrix polymers, a writing monomer, a photoinitiator and at least one aromatic 4,6-bis-trichloromethyl-s-triazin-2-yl compound of formula (I), a holographic medium comprising the corresponding photopolymer of the present invention, a hologram comprising a holographic medium of the present invention, a process for producing a hologram via pulsed laser radiation, and also to the use of a holographic medium of the present invention to record holograms.
Abstract:
Provided is a photopolymer composition that may exhibit low volume shrinkage during holographic recording and may prevent a photosensitive dye from remaining unbleached after holographic recording.
Abstract:
A method of storing information using monomers such as nucleotides is provided including converting a format of information into a plurality of bit sequences of a bit stream with each having a corresponding bit barcode, converting the plurality of bit sequences to a plurality of corresponding oligonucleotide sequences using one bit per base encoding, synthesizing the plurality of corresponding oligonucleotide sequences on a substrate having a plurality of reaction locations, and storing the synthesized plurality of corresponding oligonucleotide sequences.
Abstract:
The invention relates to a photopolymer formulation comprising a polyol component, a polyisocyanate component, a writing monomer, and a photoinitiator, containing a coinitiator and a dye having the formula F An, where F stands for a cationic dye and An″ stands for an anion, wherein the dye having the formula F An comprises a water absorption of =5%. The invention further relates to a holographic medium, in particular in the form of a film, containing a photopolymer formulation according to the invention, to the use of such a medium for recording holograms, and to a special dye that can be used in the photopolymer formulation according to the invention.
Abstract:
Provided is a photopolymer composition that may exhibit low volume shrinkage during holographic recording and may prevent a photosensitive dye from remaining unbleached after holographic recording.
Abstract:
The object of the invention is to provide an optical information recording medium which excels in stability e.g., for preserving the properties during a long-term storage and which enables recording using a laser having a small peak power, and a method for manufacturing such an optical information recording medium. An optical information recording medium 10 includes a recording layer 14, and intermediate layers (adhesive agent layer 15A and recording layer support layer 15B) adjacent to the recording layer 14, and the recording layer 14 includes a recording material comprising a one-photon absorption dye bound to a polymer binder (polymer compound).
Abstract:
The invention relates to a photopolymer formulation comprising polyurethane matrix polymers, writing monomers, and photoinitiators, wherein the writing monomers comprise compounds of formula (I), where R1, R2, R3 independent of each other are each a halogen atom or an organic radical, wherein at least one of the radicals is an organic radical comprising a radiation hardening group. The invention further relates to the use of the photopolymer formulation for producing holographic media.
Abstract:
The present invention relates to novel photopolymer formulation comprising a polyol component, a polyisocyanate component, a writing monomer and a photoinitiator comprising a dye of formula (I). The present invention further relates to a holographic medium which contains a photopolymer formulation of the present invention or is obtainable by using same, to the use of a photopolymer formulation of the present invention for producing holographic media and also to a process for producing a holographic medium by using a photopolymer formulation of the present invention.
Abstract:
A recording material includes a dye-bonded polymer compound which contains a polymer compound to which a one-photon absorption dye is bonded, and a glass transition temperature of the recording material is higher than 200° C. An optical information recording medium includes a recording layer and an intermediate layer adjacent to the recording layer, and the recording layer contains the above-described recording material.