Abstract:
A hard drive disk substrate is formed of a multi-phase ceramic-based material having at least two phases with amorphous phases being present in an amount less than about 1 volume percent based on the volume of the ceramic-based material or at least one phase being free metal. A process for producing the ceramic-based disk substrate is produced by forming a flat disk of a porous ceramic and then infiltrating the porous ceramic with a metal whereby a multi-phase ceramic-based computer hard drive disk is produced. Additionally, a step of passivating the porous ceramic by elevating it to a temperature of about 1300.degree. to about 1800.degree. C. before the infiltrating step may be performed, such that the surfaces are passivated and the reaction kinetics can be controlled during the infiltrating step. A preferred composite material is made of a multi-phase boron carbide composite material including grains having peaks with an average roughness value, Ra, of between about 1 to about 200.ANG., the roughness value being formed in situ by causing a micro hardness gradient of between about 19 and about 3200 Kg/mm.sup.2 in the various phases of the multi-phase boron carbide composite material.
Abstract:
A magnetic disk is provided which comprises a nonmetallic glass or glass ceramic substrate having one or more under layers, a magnetic layer applied over the under layers, and a hard carbon layer applied over the magnetic layer. A plurality of bumps are formed on the magnetic disk by applying a beam from a near infrared wavelength laser to the surface of the carbon layer.
Abstract:
Provided is a magnetic recording medium including: a support body; a base layer containing carbon particle powder and metal-containing particle powder; and a recording layer. In a recording surface, a maximum indentation depth h is 85≤h≤140, and a ratio d of a permanent strain to an elastic recovery (permanent strain/elastic recovery) is 0.95≤d≤1.25.
Abstract:
The purpose of the present invention is to provide a method for manufacturing a magnetic recording medium including a magnetic recording layer having a larger magnetic anisotropic constant Ku. The method according to the present invention includes the steps of: (a) preparing a substrate; (b) heating the substrate to a temperature of 350° C. or higher, and depositing a non-magnetic material containing MgO as a main component to form a base layer; and (c) forming a magnetic recording layer onto the base layer.
Abstract:
A magnetic disk is provided which comprises a nonmetallic glass or glass ceramic substrate having one or more under layers, a magnetic layer applied over the under layers, and a hard carbon layer applied over the magnetic layer. A plurality of bumps are formed on the magnetic disk by applying a beam from a near infrared wavelength laser to the surface of the carbon layer.
Abstract:
Hard disk drive components, such as, sliders, load beams, support arms, actuators, actuator bearings, spacers, clamps, spindles, ball bearings, thrust bearings, journal bearings, base plates, housings, and covers, formed of a multi-phase ceramic-based material. One method of making the hard disk drive components includes (a) forming a porous body of ceramic; (b) infiltrating a liquid into the pores of the ceramic body; (c) solidifying the infiltrated liquid; and (d) machining the metal-infiltrated ceramic body to form the hard disk drive component.
Abstract:
A magnetic disk is provided which comprises a nonmetallic glass or glass ceramic substrate having one or more under layers, a magnetic layer applied over the under layers, and a hard carbon layer applied over the magnetic layer. A plurality of bumps are formed on the magnetic disk by applying a beam from a near infrared wavelength laser to the surface of the carbon layer.
Abstract:
A hard drive disk substrate is formed of a multi-phase ceramic-based material having at least two phases with amorphous phases being present in an amount less than about 1 volume percent based on the volume of the ceramic-based material or at least one phase being free metal. A process for producing the ceramic-based disk substrate is produced by forming a flat disk of a porous ceramic and then infiltrating the porous ceramic with a metal whereby a multi-phase ceramic-based computer hard drive disk is produced. Additionally, a step of passivating the porous ceramic by elevating it to a temperature of about 1300.degree. to about 1800.degree. C. before the infiltrating step may be performed, such that the surfaces are passivated and the reaction kinetics can be controlled during the infiltrating step. A preferred composite material is made of a multi-phase boron carbide composite material including grains having peaks with an average roughness value, Ra, of between about 1 to about 200 .ANG., the roughness value being formed in situ by causing a micro hardness gradient of between about 19 and about 3200 Kg/mm.sup.2 in the various phases of the multi-phase boron carbide composite material.