摘要:
A magnetic recording medium with a reduced average grain diameter and reduced grain diameter dispersion is provided. A magnetic recording medium having a magnetic property (magnetic anisotropy energy) applicable as a magnetic recording medium is provided. It is a magnetic recording medium containing a substrate, a grain diameter control layer, a first seed layer, a second seed layer, and a magnetic recording layer containing an ordered alloy in this order, in which the second seed layer is composed of crystal grains having TiN as a main component, and a grain boundary material having at least one or more selected from the group consisting of metal oxides and carbon as a main component.
摘要:
The invention provides a magnetic recording medium with an excellent signal-to-noise ratio during reading by reducing the noise produced during writing of data onto the magnetic recording medium, and increasing the signal level. The assisted magnetic recording medium according to one embodiment comprising a substrate, a base layer, and a magnetic layer composed mainly of an alloy with an L10-type crystal structure, the assisted magnetic recording medium having a pinning layer in contact with the magnetic layer, and the pinning layer including Co or an alloy composed mainly of Co.
摘要:
A method of manufacturing a magnetic recording medium, includes at least: forming an orientation control layer 3 that controls orientation of an immediately above layer thereof on a non-magnetic substrate 1; and forming a perpendicular magnetic layer 4 in which an easy axis of magnetization is mainly perpendicularly orientated to the non-magnetic substrate 1, in which the forming of the orientation control layer 3 includes forming a granular layer having a granular structure that includes Ru or a material in which Ru is a main component and an oxide having a melting point which is greater than or equal to 450° C. and less than or equal to 1000° C., by a sputtering method, and the forming of the perpendicular magnetic layer 4 includes growing crystal grains to form columnar crystals that are continuous in a thickness direction together with crystal grains that form the orientation control layer 3.
摘要:
The purpose of the present invention is to provide a magnetic recording medium having a stacked structure of a seed layer including (Mg1-xTix)O and a magnetic recording layer including an L10 ordered alloy, and having improved properties. The method for producing a magnetic recording layer according to the present invention includes the steps of: (1) preparing a substrate; (2) forming a seed layer including (Mg1-xTix)O onto the substrate; (3) plasma etching the seed layer in an atmosphere including inert gas; and (4) forming a magnetic recording layer including an ordered alloy onto the seed layer which has been subjected to the step (3).
摘要:
When waviness having a wavelength component of 10 to 500 μm in the circumferential direction of a main surface of a disk-shaped substrate is acquired and slopes are acquired from the waviness at an interval of 50 to 100 μm, the substrate being used in a magnetic disk on which recording or reading is performed using a DFH head, an average value of absolute values of the slopes is 0.45×10−4 or less. This magnetic-disk substrate is used in a magnetic disk and a magnetic-disk drive device.
摘要:
An aluminum alloy substrate for a magnetic disk includes 0.5 mass % or more and 24.0 mass % or less of Si, 0.01 mass % or more and 3.00 mass % or less of Fe, and the balance of Al and unavoidable impurities. The aluminum alloy substrate for a magnetic disk includes a smooth plated surface and has high rigidity.
摘要:
A stack includes a substrate, a magnetic recording layer having a columnar structure, and an interlayer disposed between the substrate and the magnetic recording layer. The columnar structure includes magnetic grains separated by a crystalline segregant or a combination of crystalline and amorphous segregants.
摘要:
The present disclosure generally relates to a PMR media for use in a HDD. The PMR media has an amorphous ferri-magnetic material layer disposed within the capping structure. The amorphous ferri-magnetic material layer reduces the noise. The amorphous ferri-magnetic material layer may be disposed between capping layer or on top of the capping layers. Additionally, the amorphous ferri-magnetic material layer may contain Tb.
摘要:
To provide a substrate for information recording medium having various properties, in particular higher fracture toughness, required for application of the substrate for information recording medium of the next generation such as perpendicular magnetic recording system, etc. and a material with excellent workability for such purpose. A crystallized glass substrate for information recording medium, consisting of a crystallized glass which comprises one or more selected from RAl2O4 and R2TiO4 as a main crystal phase, in which R is one or more selected from Zn, Mg and Fe, and in which the main crystal phase has a crystal grain size in a range of from 0.5 nm to 20 nm, a degree of crystallinity of 15% or less, and a specific gravity of 3.00 or less.
摘要:
A glass substrate for information recording medium, said glass substrate being composed of an alminosilicate glass containing 60-75% by mass of SiO2, 5-18% by mass of Al2O3, 3-10% by mass of Li2O, 3-15% by mass of Na2O and 0.5-8% by mass of ZrO2 relative to the entire glass components. The glass substrate for information recording medium contains neither As (arsenic) nor Sb (antimony), while containing at least one polyvalent element selected from the group consisting of V (vanadium), Mn (manganese), Ni (nickel), Nb (niobium), Mo (molybdenum), Sn (tin), Ce (cerium), Ta (tantalum) and Bi (bismuth). The molar ratio of the total amount of the polyvalent elements to the amount of ZrO2 is within the range of 0.05-0.50.